Abstract:
A microwave assisted magnetic head is formed to include a main pole magnetic layer including a main pole; a shielded magnetic layer including a shielded pole; a recording coil that is formed to generate a writing magnetic field from a tip of the main pole; and a microwave radiation waveguide made of a conductive nonmagnetic material that is disposed in a recording gap, the recording gap being a gap between the main pole and the shielded pole. The main pole magnetic layer and the shielded magnetic layer have an intermediate connection part that connects the layers at a depth-side, and an electrical insulation magnetic film is disposed in the intermediate connection part, and the main pole and the shielded pole are electrically connected with the microwave radiation waveguide that is disposed in the recording gap, which is the gap between the main pole and the shielded pole so that a simple configuration, with a relatively easy and efficient manufacturing process, is realized that overlaps AC magnetic fields in an in-plane direction of a microwave band, which is the same as, or close to, a ferromagnetic resonant frequency of a medium recording layer.
Abstract:
A thin-film magnetic head comprises at least one of a magnetoresistive device for reading and an electromagnetic transducer device for writing, and a heating element provided in the head body part. The heating element has an up portion meandering between an origin and a halfway point and a down portion meandering along the up portion from the halfway point to an end positioned in the vicinity of the origin, and adapted to generate heat when energized.
Abstract:
In a first magnetic film, two notches are formed separately by a given distance, and a first pole piece is located between the notches. The first pole piece includes a uniform width portion. A second magnetic film includes a second pole piece. In the first pole piece, if the height of the uniform width portion is defined by “TH1”, and the depth of the uniform width portion to a top surface from a base plane of the first magnetic film is defined by “ND1”, and the thickness of said gap film is defined by “WG”, the relations of TH1≧4WG and ND1≧4WG are satisfied.
Abstract:
A gap film of a write element is provided between a first pole portion and a second pole portion. The second pole portion includes a third magnetic film and a fourth magnetic film. The third magnetic film is provided adjacent to the gap film and the fourth magnetic film is provided adjacent to the third magnetic film. The surface of the fourth magnetic film facing opposite the medium includes a first side adjacent to the third magnetic film and a second sides extending outward from the first side. The second sides each inclines toward the opposite side from the third magnetic film at an angle of less than 90° relative to an extended line of the first side to eliminate recording bleed occurring due to leaked magnetic field.
Abstract:
The present invention relates to a thin film magnetic head that achieves low NLTS and demonstrates outstanding O/W characteristics in a high frequency range. A first magnetic film and a second magnetic film face opposite each other over a gap film at a side where a surface facing opposite the medium is present. A first yoke and a second yoke, which extend rearward on the opposite side from the surface facing opposite the medium, are linked to each other at a rear linking portion. A coil film, which is supported by an insulating film, is provided in a coil around the rear linking portion. N/YL.gtoreq.0.2 (turns/.mu.m) is satisfied, with YL (.mu.m) representing the distance from the surface facing opposite the medium to the rear linking portion and N (turns) representing the number of turns of the coil film.
Abstract:
A head assembly including a suspension, a head slider mounted on a front end portion of the suspension and having a magnetoresistive element, and a pair of lead lines formed on the suspension and having first ends connected to the magnetoresistive element. The head assembly further includes a metal ball connected by bonding to the pair of lead lines. In handling the head assembly as a separate member, a current caused by static electricity flows through the metal ball short-circuiting the pair of lead lines, thereby preventing burning of the magnetoresistive element due to the current. After mounting the head assembly to an actuator arm, the metal ball is removed to electrically open the pair of lead lines.
Abstract:
This magnetic recording device is provided with a magnetic write head having a magnetic pole, and a magnetic recording medium having a plurality of data recording blocks. Each of the data recording blocks is formed with a plurality of write tracks, and separated, in a write track width direction, from neighboring one of the data recording blocks with a writing exudation suppression section in between. With this configuration, a magnetic mutual interference of the adjacent data recording blocks at the time of a data rewriting process is avoided even when a mutual interval of the data recording blocks is narrowed, and a good recording state is maintained in each of the data recording blocks. Therefore, it is possible to achieve an improvement in a recording density, while realizing the good and brief data rewriting process for each of the data recording blocks.
Abstract:
For obtaining a flying height of a magnetic head from a magnetic disk, the magnetic head being placed in a slider arranged at an interval with the magnetic disk, an initial setting process and a flying height detecting process are performed. In the initial setting process, driving power to a heater is increased gradually, from a state where the heater arranged at a position in proximity to the magnetic head in the slider is not driven, until the magnetic head makes contact with the magnetic disk. Then, in each stage, an electrical resistance value of the sensor arranged at a position in proximity to the magnetic head in the slider, which is increased due to the heat from heater, and either an approach distance of the magnetic head toward the magnetic disk or the flying height of the magnetic head from the magnetic disk are acquired. Then, basic data is prepared by obtaining the relationship between a variation of the electrical resistance value of the sensor and the flying height of the magnetic head from the magnetic disk, which is obtained in each stage or which calculated from the approach distance in each stage. In the flying height detecting process, an electrical resistance value of the sensor is determined, and a variation of the electrical resistance value is calculated from the determined values. Then, the flying height of the magnetic head from the magnetic disk in the state where the electrical resistance value was determined is obtained based on the basic data obtained in the initial setting process, using the calculated variation of the electrical resistance value.
Abstract:
A measurement circuit system of a magnetic field measurement apparatus of the present invention includes an amplifier, a mixer circuit and a band-pass filter that are connected in order on an output end side of a microstrip line or a coplanar wave guide, which is an in-plane high frequency magnetic field intensity measurement element, a frequency immediately before being inputted in the band-pass filter is down-converted by the mixer circuit to a frequency so that a band width of the band-pass filter can be used, the band-pass filter uses a narrow band of ±0.5-±10 KHz (1 KHz-20 KHz as a bandwidth) centering a fundamental frequency selected from 5-20 MHz that is down-converted by the mixer circuit as a center peak passing frequency, and the measurement circuit system is configured to obtain 3 dB or greater of a signal-to-noise ratio (SNR) that is a ratio of S with N; where S represents the reproduction voltage (reproduction output) of the high frequency reproduction signal induced by the in-plane high frequency magnetic field intensity measurement element, and N represents a total noise voltage of a circuit noise including a noise generated by the in-plane high frequency magnetic field intensity measurement element. Therefore, the in-plane high frequency magnetic field that a microwave-assisted magnetic head generates can be measured with high reliability and precision.
Abstract:
For obtaining a flying height of a magnetic head from a magnetic disk, the magnetic head being placed in a slider arranged at an interval with the magnetic disk, an initial setting process and a flying height detecting process are performed. In the initial setting process, driving power to a heater is increased gradually, from a state where the heater arranged at a position in proximity to the magnetic head in the slider is not driven, until the magnetic head makes contact with the magnetic disk. Then, in each stage, an electrical resistance value of the sensor arranged at a position in proximity to the magnetic head in the slider, which is increased due to the heat from heater, and either an approach distance of the magnetic head toward the magnetic disk or the flying height of the magnetic head from the magnetic disk are acquired. Then, basic data is prepared by obtaining the relationship between a variation of the electrical resistance value of the sensor and the flying height of the magnetic head from the magnetic disk, which is obtained in each stage or which calculated from the approach distance in each stage. In the flying height detecting process, an electrical resistance value of the sensor is determined, and a variation of the electrical resistance value is calculated from the determined values. Then, the flying height of the magnetic head from the magnetic disk in the state where the electrical resistance value was determined is obtained based on the basic data obtained in the initial setting process, using the calculated variation of the electrical resistance value.