Abstract:
A Euclid processing module for obtaining an error locator polynomial of a binary BCH code in an error correction decoding circuit, in which error corrections of words are performed, includes registers, a shifter, a zero insertion unit, selectors and a sequencer. Coefficients of polynomials Ri (z) and Bi (z) stored in the registers are subjected to Galois field calculations by the processing module. Results of the calculations and the data of the registers are shifted by the shifter. Some of the coefficients are erased by the zero insertion unit and stored in registers by controlling the selectors with the sequencer. A necessary polynomial σ (z) is calculated by repeated processing of the processing module. The Euclid processing module decreases a logic scale and simplifies controlling logic in a state of small latency and high operating frequency.
Abstract:
Concatenated codes are improved, and a memory capacity and a memory diagnosis circuit are reduced. Address control used in an interleaver of related art is applied to a register included in a syndrome arithmetic circuit or a check code calculation circuit of related art, and an arithmetic operation result equivalent to that obtained by interleaving is derived.
Abstract:
A spark plug is provided which is designed to be compact without sacrificing a mechanical strength of a porcelain insulator. The spark plug includes a metal shell having a base end and a top end. The porcelain insulator is made of a hollow cylinder which includes a body and an insulator head. The body is retained within the metal shell. The insulator head extends from the base end of the metal shell in a lengthwise direction of the porcelain insulator and has a length made up of a major body leading to the body of the porcelain insulator and an end portion lying far away from the body. The major body has an outer diameter D1, an inner diameter D2, and a section modulus Z at a smallest-outer diameter portion thereof which meet relations of 7.1 mm≦D1≦8.8 mm, D2≧2.8 mm, and Z≧33 mm3.
Abstract:
In a spark plug for an internal combustion engine, a noble metal chip such as an iridium alloy chip is bonded on the tip of a center electrode made of a material such as nickel by laser beam welding. The noble metal chip contains another noble metal such as rhodium having a melting point lower than that of the noble metal chip. By laser welding, a molten bond containing the noble metal melted thereinto from the noble metal chip is formed at the junction of the noble metal chip and the center electrode. Alternatively, the noble metal to be melted into the molten bond may be supplied by a separate noble metal plate. The molten bond thus made has a high bonding strength and a small thermal stress, and thereby durability of the spark plug is improved.
Abstract:
An oscillating piston type compressor has a piston formed integral with a blade. The compressor accommodates in a casing a compression mechanism section and a motor section, the mechanism including the piston having a plate-shaped blade integrally formed on a cylindrical portion is fitted onto an eccentric portion of a crankshaft to perform orbital motion relative to an inner peripheral surface of a cylinder, the plate-shaped blade being formed at its radial end surface with a recess or a protrusion, which serves as a reference of position.
Abstract:
To provide a spark plug having an improved consumption resistance and producible through a simple process, a spark plug comprises a noble metal chip composed of an Ir alloy material and disposed on at least one of the tip of the center electrode and the facing portion of the ground electrode, the Ir alloy material is composed of Ir and a metal having a higher oxidation resistance than Ir and forming solid solution with Ir at all proportions to prevent oxidation evaporation of Ir, and the chip is produced by elongating an ingot of the Ir alloy material through hot forging to a bar having a fine fiber texture to prevent surface cracking during elongation, followed by hot rolling, hot wire drawing and cutting to the chip length.
Abstract:
Method of producing a spark plug having a center electrode 1 provided with precious metal chips 31 and 32 on the tip 10. Production of the center electrode 1 is composed of a flat area formation process wherein a cylindrical center electrode 1 is formed by extrusion of metal material and wherein flat areas 111 and 113 are formed on the sides of the tip 10 of the same, a tip bonding process wherein precious metal chips 31 and 32 are bonded to the flat areas, and a plastic machining process wherein the tip 10 whereupon the precious metal chips are bonded is formed into an abbreviated cylinder by means of plastic machining. By applying an identification mark to the tip surface of the tip 10, the precious metal chips 31 and 32 can accurately and easily be arranged opposite the ground electrodes when mounting the center electrode in a metal housing.
Abstract:
A composite chip formed by joining a discharging layer and a heat stress relieving layer at a joint interface therebetween beforehand is provided on at least one of a central electrode and a ground electrode in its discharge portion made of an electrode material. The discharging layer is made of a precious metal or a precious metal alloy having superior spark- and wear-resistance, and the heat stress relieving layer is made of a metal or an alloy having a linear expansion coefficient between those of the discharging layer and the electrode material. Formed at the joint interface between both the discharging layer and the heat stress relieving layer through mutual diffusion of those materials developed when the two layers are joined to each other is a diffusion layer, in which concentrations of materials of both the layers are continuously changed. A thickness of the diffusion layer is not less than 3 .mu.m in a state that the composite chip is welded to the discharge portion.
Abstract:
A dedicated V-shaped groove forming machine comprises an X-axis slider disposed over a plate material so as be movable in an X-axis (groove forming direction); a Z-axis slider supported by the X-axis slider so as to be movable in a Z-axis direction (vertical direction); and plural cutting tools mounted on the Z-axis slider; and a Y-axis carriage for moving a plate material (workpiece) in a Y-axis direction (perpendicular to the X-axis direction). Further, there are provided work table adjusting device for adjusting the cutting tool movement locus in parallel to the work table and tool height detecting device for determining an origin in the Z-axis direction, etc.