摘要:
A slab has a steel composition including 0.020% to 0.065% of C, 0.1% or less of Si, 0.40% to less than 0.80% of Mn, 0.030% or less of P, 0.005% or less of S, 0.08% to 0.16% of Ti, 0.005% to 0.1% of Al, 0.005% or less of N, and the balance being Fe and incidental impurities, in which Ti*(=Ti−(48/14)×N) satisfies [Ti*≧0.08] and [0.300≦C/Ti*≦0.375], is subjected to hot rolling to obtain a hot-rolled steel sheet in which the steel microstructure includes, in terms of area fraction, 95% or more of a ferrite phase; the average ferrite grain size is 10 μm or less; the average grain size of Ti carbides precipitated in steel is 10 nm or less; and Ti in the amount of 80% or more of Ti* is precipitated as Ti carbides.
摘要:
A slab has a steel composition including 0.020% to 0.065% of C, 0.1% or less of Si, 0.40% to less than 0.80% of Mn, 0.030% or less of P, 0.005% or less of S, 0.08% to 0.16% of Ti, 0.005% to 0.1% of Al, 0.005% or less of N, and the balance being Fe and incidental impurities, in which Ti*(=Ti−(48/14)×N) satisfies [Ti*≧0.08] and [0.300≦C/Ti*≦0.375], is subjected to hot rolling to obtain a hot-rolled steel sheet in which the steel microstructure includes, in terms of area fraction, 95% or more of a ferrite phase; the average ferrite grain size is 10 μm or less; the average grain size of Ti carbides precipitated in steel is 10 nm or less; and Ti in the amount of 80% or more of Ti* is precipitated as Ti carbides.
摘要翻译:钢坯的组成为:C:0.020〜0.065%,Si:0.1%以下,Si:0.40%〜0.80%,P:0.030%以下,S:0.005%以下,S:0.08〜0.16 Ti = 0.005%〜0.1%,N为0.005%以下,余量为Ti *(= Ti-(48/14)×N)为Fe [Ti *≥0.08] ]和[0.300≦̸ C / Ti *≦̸ 0.375]进行热轧,得到其中钢组织包含面积率为95%以上的铁素体相的热轧钢板; 平均铁素体晶粒尺寸为10μm以下; 钢中析出的Ti碳化物的平均粒径为10nm以下; Ti的含量为80%以上的Ti作为Ti碳化物析出。
摘要:
Provided is a high-strength steel sheet having good warm press formability and excellent strength and ductility after warm press forming, and a method for manufacturing such. The high-strength steel sheet has a tensile strength at room temperature not less than 780 MPa, a yield stress at a heating temperature range of 400° C. to 700° C. not more than 80% of the yield stress at room temperature, total elongation at the heating temperature range not less than 1.1 times the total elongation at room temperature, yield stress and total elongation after the steel sheet is heated to the heating temperature range, subjected to a strain of not more than 20%, and cooled from the heating temperature to room temperature, not less than 70% of the yield stress and total elongation, respectively, at room temperature before the heating.