摘要:
A polymeric electroluminescent device suppresses photo-oxidation and enhances luminous stability and efficiency by using a nanocomposite of a luminescent polymer and metal nanoparticles as its emitting layer.
摘要:
Provided is a transparent carbon nanotube (CNT) electrode comprising a net-like (i.e., net-shaped) CNT thin film and a method for preparing the same. More specifically, a transparent CNT electrode comprises a transparent substrate and a net-shaped CNT thin film formed on the transparent substrate, and a method for preparing a transparent CNT electrode, comprising forming a thin film using particulate materials and CNTs, and then removing the particulate materials to form a net-shaped CNT thin film. The transparent CNT electrode exhibits excellent electrical conductivity while maintaining high light transmittance. Therefore, the transparent CNT electrode can be widely used to fabricate a variety of electronic devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays, and touch screen panels, that have need of electrodes possessing both light transmission properties and conductive properties.
摘要:
Organic white-light-emitting blend materials were prepared by light-doping method and electroluminescent devices fabricated using the same, including a transparent substance, translucent electrode, white-light-emitting layer and metal electrode in order, can efficiently control Förster energy transfer in organic light-emitting materials by performing light doping, thus to fabricate a white electroluminescent device using the blend materials which can emit white-light with high efficiency. The white-light-emitting blend materials can be obtained by the light-doping method, in which the energy transfer occurs only between a host which is a donor and each dopant which is an acceptor, while the energy transfers between dopants are efficiently blocked.
摘要:
Disclosed is a method of manufacturing colloidal crystals using a confined convective assembly, more particularly, to a method for manufacturing two-dimensional and/or three dimensional colloidal crystals on a substrate by infusing colloidal suspension between two substrates and self-assembling colloidal particles by capillary action. The present invention can control a convective flow moving the colloidal particles to a meniscus generated by removing the solvent of the colloidal suspension. It is possible to manufacture face-to-face two-dimensional colloidal crystals and/or three-dimensional colloidal crystals within a short time using various sizes of colloidal particles through the control of the convective flow of colloidal particles, which are not easily achieved in the existing method.The present invention can use two-dimensional colloidal crystals and/or three-dimensional colloidal crystals manufactured using the confined convective assembly method in the various fields such as in biosensors and devices, information storing medium, display devices and optical devices.
摘要:
Organic white-light-emitting blend materials were prepared by light-doping method and electroluminescent devices fabricated using the same, including a transparent substance, translucent electrode, white-light-emitting layer and metal electrode in order, can efficiently control Förster energy transfer in organic light-emitting materials by performing light doping, thus to fabricate a white electroluminescent device using the blend materials which can emit white-light with high efficiency. The white-light-emitting blend materials can be obtained by the light-doping method, in which the energy transfer occurs only between a host which is a donor and each dopant which is an acceptor, while the energy transfers between dopants are efficiently blocked.
摘要:
The present invention relates to electroluminescent devices employing single-ion conductors as the materials for an electron- or hole-injecting layer. Preferred electroluminescent devices employ an electron- or hole-injecting layer made of single-ion conductors in a conventional electroluminescent device which comprises: a transparent substrate; a semitransparent electrode deposited on the transparent substrate; a hole-injecting layer positioned on the semitransparent electrode; an electroluminescent layer made of organic luminescent material, positioned on the hole-injecting layer; an electron-injecting layer positioned on the electroluminescent layer; and, a metal electrode deposited on the electron-injecting layer. The electroluminescent devices of the invention have excellent electroluminescent efficiency and low turn-on voltage, which make possible their application to the development of high efficiency electroluminescent devices.
摘要:
The present invention provides a magnetorheological fluid in which magnetic particles coated with a hydrophilic surfactant are dispersed in a water in oil emulsion, and a process for preparing the same. The magnetorheological fluid of the present invention is prepared by adding water to oil dissolved with emulsifier, stirring it to give a mobile phase of water in oil emulsion, and dispersing magnetic particles coated with a hydrophilic surfactant in the water in oil emulsion. The invented magnetorheological fluid is improved in terms of stability through the interaction between surfactant of the magnetic particle surface and water molecule, which makes possible its practical application in the development of variable devices employing the magnetorheological fluid.
摘要:
Provided is a transparent carbon nanotube (CNT) electrode comprising a net-like (i.e., net-shaped) CNT thin film and a method for preparing the same. More specifically, a transparent CNT electrode comprises a transparent substrate and a net-shaped CNT thin film formed on the transparent substrate, and a method for preparing a transparent CNT electrode, comprising forming a thin film using particulate materials and CNTs, and then removing the particulate materials to form a net-shaped CNT thin film. The transparent CNT electrode exhibits excellent electrical conductivity while maintaining high light transmittance. Therefore, the transparent CNT electrode can be widely used to fabricate a variety of electronic devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays, and touch screen panels, that have need of electrodes possessing both light transmission properties and conductive properties.
摘要:
There is provided a polymer electroluminescent device, which comprises a transparent substrate, an anode, a polymer emitting layer, a polymer insulating nanolayer and a cathode. The polymer insulating nanolayer having the dielectric constant (∈) of less than 3.0 is located between the cathode and the polymer emitting layer. According to the present invention, it is possible to obtain the polymer electroluminescent device showing more improved luminance efficiency.
摘要:
There is provided a polymer electroluminescent device, which comprises a transparent substrate, an anode, a polymer emitting layer, a polymer insulating nanolayer and a cathode. The polymer insulating nanolayer having the dielectric constant (∈) of less than 3.0 is located between the cathode and the polymer emitting layer. According to the present invention, it is possible to obtain the polymer electroluminescent device showing more improved luminance efficiency.