摘要:
A method and system for automated visual analysis of a dipstick using standard user equipment (UE) are disclosed herein. The method may include the following steps: capturing, using an arbitrary UE having specified image capturing and processing capabilities, an image of a dipstick having colored test reagents, and a calibration array having a plurality of colored calibration elements which are tailored specifically to the test reagents; deriving, based on the captured image, illumination parameters associated with the dipstick and the calibration array; determining whether the illumination parameters are within predefined illumination boundary conditions sufficient for interpreting the test reagents, given the specified image capturing and processing capabilities of the UE; applying image enhancement operations to the captured image, based on predefined mapping between the derived illumination parameters and the required adjustments; and interpreting the colored test reagents, based on the colored calibration elements, in the enhanced captured image.
摘要:
Kits, diagnostic systems and methods are provided, which measure the distribution of colors of skin features by comparison to calibrated colors which are co-imaged with the skin feature. The colors on the calibration template (calibrator) are selected to represent the expected range of feature colors under various illumination and capturing conditions. The calibrator may also comprise features with different forms and size for calibrating geometric parameters of the skin features in the captured images. Measurements may be enhanced by monitoring over time changes in the distribution of colors, by measuring two and three dimensional geometrical parameters of the skin feature and by associating the data with medical diagnostic parameters. Thus, simple means for skin diagnosis and monitoring are provided which simplify and improve current dermatologic diagnostic procedures.
摘要:
A method for analyzing a dipstick using a smartphone is provided herein. The method includes: capturing an image containing: a dipstick having colored test reagents, and a color board having a grid of grey patches and a plurality of reference color patches; deriving, based on the grid, local illumination parameters associated with the colored test reagents and the plurality of reference color patches; determining whether illumination parameters are sufficient for interpreting the colored test reagent; in a case the illumination parameters are insufficient, notifying a user that an interpretation of the colored test reagents is not possible, otherwise, applying one or more image enhancement operation to the captured image, based on an analysis of the grid of grey patches, to yield enhanced reference color patches; and interpreting the one or more colored test reagents, by projecting the colored test reagents onto a vector of the enhanced reference color patches.