Abstract:
A reading device includes a position reference member and a reader. The position reference member has a reference pattern that includes a line extending in a prescribed direction. The position reference member is configured to relatively move in a direction orthogonal to the prescribed direction. The reader includes a plurality of sensor chips, each of the sensor chips including a plurality of pixels. The reference pattern corresponds to each of the sensor chips of the reader.
Abstract:
An image reader includes a reading device to read an image on a recording medium, a first conveying roller pair upstream of the reading device in a conveyance direction of the recording medium, a second conveying roller pair downstream of the reading device in the conveyance direction, to hold the recording medium together with the first conveying roller pair to convey the recording medium, and a driver to drive the first conveying roller pair and the second conveying roller pair so that a relative relation between a reading position of the reading device and the recording medium held by the first conveying roller pair and the second conveying roller pair is constant. The reading device determines that the image read from the recording medium is effective in a period in which the relative relation is constant.
Abstract:
In a first mode, an original is read with a first and a second carriages stopped. In a second mode, the original is read with the first and the second carriages moving in a sub-scanning direction with a distance between the original and an optical reading element kept constant. A control unit causes, if a predetermined condition is satisfied after reading the original in the first mode, the first and the second carriages to standby at a reading position of the first mode while keeping the light source turned on, and if a next read request is issued within a predetermined time, causes the first and the second carriages to move to a next reading operation.
Abstract:
An image reading apparatus includes a frame, a light source, a photo-electronic converting element, and a flexible plate. The frame is activated for a reciprocating movement. The light source emits light to irradiate an image surface of an original and is held by the frame. The photo-electronic converting element receives the light emitted by the light source and which is reflected by the image surface of the original. In addition, the photo-electronic converting element converts the light to an analog image signal. The flexible plate includes a first printed wire for applying a driving voltage to the light source, and a second printed wire for establishing a ground to the frame.
Abstract:
A position detector includes a reading device, a position reference member having a mark opposite the reading device, and circuitry. The circuitry controls the reading device to detect the contour of the processing target and the position of the image pattern on the processing target and the position of the mark and corrects a processing position for the processing target to offset distortion of the reading device.
Abstract:
A method of supplying recording sheets from a plurality of paper supplying units to a reference position within a main body of an image forming apparatus which forms an image on each of the sheets supplied successively from the paper supplying units via corresponding transport paths having different lengths comprises the steps of receiving from the units data related to the lengths of the transport paths between the units and the reference position, calculating from the received data a time when a supply of a second sheet is to start from a second unit which is designated relative to a time when a first sheet supplied from a first unit which is designated reaches the reference position when it is assumed that the length of the corresponding transport path from the first paper supplying unit is zero, and driving the first and second units with timings based on the calculated times, so that a recording speed of the image forming apparatus is maintained constant regardless of the length of the transport path used.
Abstract:
An image processor includes a reading unit that moves a scanning optical system toward a reference white sheet to read the reference white sheet from a direction along which the scanning optical system returns to the carried document reading glass before reading one sheet of a document mounted on a carried document reading glass by an automatic document feeding unit in a sheet document reading mode of forming an image of the document carried by the automatic document feeding unit by an image sensor through the scanning optical system facing the carried document reading glass.
Abstract:
A level detecting part detects image data levels for the respective output directions of the first half and the second half to be used for the linearity correction, which image data levels correspond to image data around a connection point between the first half and the second half and are obtained from respective combinations for the respective output directions of the first half and the second half. A calculating part calculates linearity correction values or correction value calculating parameters from the detected image data levels for any one of the first half and the second half; and a defect detection part detecting a defect in the image data levels thus detected around the connection point are provided.
Abstract:
An image processor includes a reading unit that moves a scanning optical system toward a reference white sheet to read the reference white sheet from a direction along which the scanning optical system returns to the carried document reading glass before reading one sheet of a document mounted on a carried document reading glass by an automatic document feeding unit in a sheet document reading mode of forming an image of the document carried by the automatic document feeding unit by an image sensor through the scanning optical system facing the carried document reading glass.
Abstract:
A level detecting part detects image data levels for the respective output directions of the first half and the second half to be used for the linearity correction, which image data levels correspond to image data around a connection point between the first half and the second half and are obtained from respective combinations for the respective output directions of the first half and the second half. A calculating part calculates linearity correction values or correction value calculating parameters from the detected image data levels for any one of the first half and the second half; and a defect detection part detecting a defect in the image data levels thus detected around the connection point are provided.