Abstract:
A method and apparatus are described including a laser with a plurality of internal or external actuators for affecting an optical frequency of light output by the laser, wherein the plurality of actuators have a corresponding plurality of different frequency response bands for changing optical properties of the laser and a corresponding plurality of actuation ranges of optical frequencies affected. Also included is an optical detector, and a plurality of optical paths configured to direct light output by the laser onto the detector. A laser controller is configured to provide a plurality of inputs to the plurality of actuators based on a detector signal output from the optical detector and the corresponding frequency response bands and actuation ranges.
Abstract:
A method, apparatus and computer-readable storage medium are described for a tunable laser source that produces a desired frequency modulated optical waveform with a precision within 0.01 percent over a bandwidth greater than about 50 gigaHertz. An apparatus includes a tunable laser having one or more drive inputs for affecting an optical frequency of light output by the laser; and an optical detector. Multiple optical paths are configured to direct light output by the laser onto the optical detector. A laser controller is configured to provide to a drive input a loopback signal based on a measured or predetermined difference in optical dispersion among the plurality of optical paths and a detector signal output from the optical detector. In some embodiments, a ranging device includes the tunable laser source.
Abstract:
A method, apparatus and computer-readable storage medium are described for a tunable laser source that produces a desired frequency modulated optical waveform with a precision within 0.01 percent over a bandwidth greater than about 50 gigaHertz. An apparatus includes a tunable laser having one or more drive inputs for affecting an optical frequency of light output by the laser; and an optical detector. Multiple optical paths are configured to direct light output by the laser onto the optical detector. A laser controller is configured to provide to a drive input a loopback signal based on a measured or predetermined difference in optical dispersion among the plurality of optical paths and a detector signal output from the optical detector. In some embodiments, a ranging device includes the tunable laser source.
Abstract:
A method and apparatus are described including a laser with a plurality of internal or external actuators for affecting an optical frequency of light output by the laser, wherein the plurality of actuators have a corresponding plurality of different frequency response bands for changing optical properties of the laser and a corresponding plurality of actuation ranges of optical frequencies affected. Also included is an optical detector, and a plurality of optical paths configured to direct light output by the laser onto the detector. A laser controller is configured to provide a plurality of inputs to the plurality of actuators based on a detector signal output from the optical detector and the corresponding frequency response bands and actuation ranges.
Abstract:
This invention provides an inexpensive, sensitive sensor to measure target position, velocity and vibration based on optical feedback-induced fluctuations in the operating frequency of a diode laser. The sensor comprises a diode laser, an optical frequency discriminator to measure the laser operating frequency, and an electronic signal analyzer to obtain the modulation frequency of the laser operating frequency. This invention further includes two calibration mechanisms for vibration amplitude measurement. In a first calibration mechanism the diode laser is mounted on a laser vibrator, which vibrates the laser relative to the target. In a second calibration mechanism a frequency modulator is coupled to the diode laser to modulate the operating frequency.