Abstract:
This invention pertains to methods of [11C]-radiolabelling “phenothiazine” and “phenothiazine-like” compounds, which have a pendant group (which is a primary amino group; a cationic primary imino group; a secondary amino group; a cationic secondary imino group; a primary imino group; or a secondary imino group), by reaction with [11C]methyl trifluoromethanesulfonate (CF3SO2O11CH3), also known as [11C]methyl triflate. This reaction converts the pendant group into a [11C]methyl-labelled pendant group. The resulting [11C]-radiolabelling product is useful, for example, as an in vivo positron emission tomography (PET) tracer, for example, for patients suffering from melanoma, the most serious form of skin cancer, and tauopathy (e.g., Alzheimer's disease). The present invention also pertains to the resulting [11C]-radiolabelling products, compositions comprising them, their use in methods of (e.g., PET) imaging, their use in methods of medical treatment and diagnosis, etc.
Abstract:
The disclosure provides a method and system of coupling end-to-end at least two existing mooring lines (12A, 12B) that are already deployed from the floating platform (56) to the seabed or other connecting structure to create a single shared line from the two lines. The shared lines then form a single looped line with both ends deployed to the subsea connections. The shared length provides enough payout of line to loosen one line sufficiently, while the other line becomes correspondingly tighter using the catenary length of the tight line. In part, the line can be loosened while the other is tightened because the lines are generally in the same overall direction to the seabed, such as in a same quadrant around the platform. Thus, the lines share their available lengths to provide the necessary payout for the repairs.
Abstract:
A controller and control method for a motorised vehicle such a wheelchair are provided. The motorised vehicle has at least two driven wheels driven independently by a motor arrangement, and the controller receives a number of input signals from a user input device of the motorised vehicle. The controller comprises drive control circuitry for generating control signals for controlling the driving of the driven wheels by the motor arrangement, the control signals being dependent on the input signals. Speed assist circuitry is responsive to an indication of current consumed in driving the driven wheels to detect occurrence of a loading condition. On detection of occurrence of a loading condition, the speed assist circuitry is then arranged to boost at least one of the input signals in order to boost top speed in the presence of the loading condition. This significantly improves the control of the motorised vehicle in situations where the occurrence of the loading condition may otherwise prevent the vehicle from moving, as for example may occur when seeking to turn the vehicle at low speed.
Abstract:
A miniature tape cartridge comprising a housing for carrying an endless recording tape therein. The housing has a front end with at least one opening for access to part of the recording tape entrained therein past the opening for engagement of the tape with an external drive source for displacing the tape at a predetermined speed and to permit an external detection means to contact and detect information signals recorded on the tape. Alignment means are also provided and associated with the front end of the cartridge for positioning the tape in a predetermined plane with respect to the external detection means. Also provided is a tape adaptor for receiving the cartridge therein and for positioning same in a continuous loop tape player whereby the tape can be engaged by a drive source and detection means.
Abstract:
A wireless mesh network includes a plurality of wireless devices and a gateway organized in a multi hop mesh topology. Each wireless device maintains and reports radio statistics to the gateway, and also reports battery conditions of its power source. The device manager communicates with the gateway and provides an alert indicating existence of a pinch point within the mesh network based upon the radio statistics. When a low battery condition is reported by a device, the device manager determines whether loss of that device is a pinch point or will cause a pinch point, and provides a low battery alert prioritized based upon the pinch point analysis.
Abstract:
A wireless mesh network includes a plurality of wireless devices and a gateway organized in a multi hop mesh topology. Each wireless device maintains and reports radio statistics to the gateway, and also reports battery conditions of its power source. The device manager communicates with the gateway and provides an alert indicating existence of a pinch point within the mesh network based upon the radio statistics. When a low battery condition is reported by a device, the device manager determines whether loss of that device is a pinch point or will cause a pinch point, and provides a low battery alert prioritized based upon the pinch point analysis.
Abstract:
A controller and control method for a motorized vehicle such a wheelchair are provided. The motorized vehicle has at least two driven wheels driven independently by a motor arrangement, and the controller receives a number of input signals from a user input device of the motorized vehicle. The controller comprises drive control circuitry for generating control signals for controlling the driving of the driven wheels by the motor arrangement, the control signals being dependent on the input signals. Speed assist circuitry is responsive to an indication of current consumed in driving the driven wheels to detect occurrence of a loading condition. On detection of occurrence of a loading condition, the speed assist circuitry is then arranged to boost at least one of the input signals in order to boost top speed in the presence of the loading condition. This significantly improves the control of the motorized vehicle in situations where the occurrence of the loading condition may otherwise prevent the vehicle from moving, as for example may occur when seeking to turn the vehicle at low speed.
Abstract:
The disclosure provides a method and system of coupling end-to-end at least two existing mooring lines (12A, 12B) that are already deployed from the floating platform (56) to the seabed or other connecting structure to create a single shared line from the two lines. The shared lines then form a single looped line with both ends deployed to the subsea connections. The shared length provides enough payout of line to loosen one line sufficiently, while the other line becomes correspondingly tighter using the catenary length of the tight line. In part, the line can be loosened while the other is tightened because the lines are generally in the same overall direction to the seabed, such as in a same quadrant around the platform. Thus, the lines share their available lengths to provide the necessary payout for the repairs.