Abstract:
An electronically activated gas cooktop control system, responsive to a touch-sensitive user interface, and capable of providing a predetermined range of cooking and simmer levels of BTU output, has two complementary heating modes of operation A first heating mode of operation is provided to produce a wide selection of simmer levels of BTU output, by electronically sequencing a solenoid-operated modulating gas valve “on” and “off”, at a predetermined level of flame. A second cooking mode of operation is provided by electronically modulating the level of flame, through use of a pulse-width-modulation (PWM) output signal to produce a wide selection of cooking levels of BTU output. An igniter system capable of insuring proper ignition of gas without generating harmful electromagnetic interference is also provided.
Abstract:
The padless touch sensor is used for detecting a touch at a sensing location onto a dielectric element by a user coupled to earth. The sensor comprises a conductive plate attached under the dielectric element and in registry with the sensing location. A predetermined potential is applied on the conductive plate. Simultaneously, test pulses are produced into earth. When the user touches the dielectric element at the sensing location, a potential variation in the conductive plate is produced during a test pulse due to a capacitive circuit formed between earth, the user and the sensor. No deposition of conductive pads on the dielectric element or other special processes are required. Foreign matter or objects placed directly on top of the dielectric element will not erroneously produce a touch condition.