Abstract:
Practical for use to make a road divider/reflector or a solar collector, a light distribution panel is disclosed to include four faces that can be planar or arched faces and constitute a light distribution curve to control the moving direction of light. When used in a lamp, light is evenly distributed onto the expected illumination area, avoiding formation of Gauss distribution and providing broad area illumination. When used as a road reflector, the light distribution panel provides excellent driving safety effect. When used in a solar collector system, the light distribution panel collects a wide range of incident light.
Abstract:
A lighting fixture includes a light source, a lamp case, a power supply device, a shaped reflector and a prism. The shaped reflector has inwardly curved front and back walls each consisting of multiple conical faces abutted against one another and sloping at different angles. The angle of inclination of one lower conical face is relatively closer toward the center of the shaped reflector than that of the adjacent upper conical face. Thus, the shaped reflector effectively and evenly reflects the light emitted by the light source onto a predetermined rectangular or particularly shaped illumination area. Therefore, the lighting fixture is practical for road illumination, lounge illumination, advertizing light box and streamline table light applications to effectively and evenly illuminate the desired area, saving much power consumption.
Abstract:
A light distribution board used as an illuminating cover for a lamp set and having on a transparent board of it saw toothed light gratings, each saw toothed light grating is composed of a convex lens surface and a bevel plane lens surface the saw toothed light gratings are arranged at two lateral sides of a central line of the transparent board to form mirror images one side to the other side, the bevel plane lens surfaces are arranged to face respectively to two lateral sides of the transparent board, while the convex lens surfaces are arranged to face to the central line; the top surface is a light receiving surface of the lamp set. The bottom surface of the transparent board is formed thereon a plurality of convex-lens strip like light gratings and the bottom surface is an illuminating surface of the lamp set. With this structure, light beams can be uniformly distributed and can avoid the phenomenon of Gauss distribution that makes the area below the lamp especially bright, and avoid the phenomenon of dazzling of eyes during looking at the light emitting member in the lamp set, and the light beams become more tender under the condition that lose of brightness is minimum.
Abstract:
A light distribution board having an improved light grating structure including a plurality of light gratings each with multiple focuses, the light distribution board is used on a light outputting surface of a lamp, in which at least a transparent board is provided on at least one of its surfaces with a plurality of light gratings each having multiple focuses, each light grating having multiple focuses is composed of two or more arciform (concave or convex) lenses and at least one lens with a non-arciform surface to form a light grating having at least two focuses. With this structure, light beams can be uniformly distributed and can avoid the phenomenon of Gauss distribution that makes the area below the lamp especially bright, and avoid the phenomenon of dazzling of eyes during looking at the light emitting member in the lamp, and the light beams become more tender under the condition that lose of brightness is minimum.
Abstract:
An energy-saving lighting device includes a lampshade body, a light-transmissive plate located on the bottom side of the lampshade body, a parabolic reflector and a nonlinear reflector having a light distribution curve mounted in the lampshade body, a light emitting device mounted in the lampshade body, and a cone reflector disposed in the lampshade body right below the light emitting device. When the light emitting device is electrically connected to emit light, light rays are evenly distributed in the illumination area without causing Gaussian distribution, thereby saving the energy and avoiding dazzling.
Abstract:
A shaped optical prism structure for mounting on an upward light-outgoing surface of a street light or wall lamp to change the direction of light through about 360 o by means of a recessed flat incident surface, a recessed primary full-reflection surface and a curved light-distribution surface formed of a series of sloping surfaces and to enable the light to be projected onto the floor.
Abstract:
A light distribution board having a plurality of light gratings each with multiple focuses, the light distribution board is used on a light outputting surface of a lamp, in which at least a transparent board is provided on at least one of its surfaces with a plurality of light gratings each having multiple focuses, each light grating having multiple focuses is composed of two or more mutually integratedly juxtaposed arciform (concave or convex) lenses to form a convex lens grating having two or more focuses. With this structure, light beams can be uniformly distributed and can avoid the phenomenon of Gauss distribution that makes the area below the lamp especially bright, and can avoid the phenomenon of dazzling of eyes during looking at the light emitting member in the lamp; and except the light beams directly under the lamp, other light beams around the lamp are completely obscured, thus an effect of no optical pollution can be obtained.
Abstract:
A light distribution board used as an illuminating cover for a lamp set and having on a transparent board of it saw toothed light gratings, each saw toothed light grating is composed of a convex lens surface and a bevel plane lens surface the saw toothed light gratings are arranged at two lateral sides of a central line of the transparent board to form mirror images one side to the other side, the bevel plane lens surfaces are arranged to face respectively to two lateral sides of the transparent board, while the convex lens surfaces are arranged to face to the central line; the top surface is a light receiving surface of the lamp set. The bottom surface of the transparent board is formed thereon a plurality of convex-lens strip like light gratings and the bottom surface is an illuminating surface of the lamp set. With this structure, light beams can be uniformly distributed and can avoid the phenomenon of Gauss distribution that makes the area below the lamp especially bright, and avoid the phenomenon of dazzling of eyes during looking at the light emitting member in the lamp set, and the light beams become more tender under the condition that lose of brightness is minimum.
Abstract:
A shaped optical prism structure for mounting on an upward light-outgoing surface of a street light or wall lamp to change the direction of light through about 360 o by means of a recessed flat incident surface, a recessed primary full-reflection surface and a curved light-distribution surface formed of a series of sloping surfaces and to enable the light to be projected onto the floor.
Abstract:
An energy-saving lampshade with even light distribution is disclosed to include a lampshade body disposed at the top side to hold a light source, a light-transmissive plate at the bottom side, a light condenser and a curved light reflector mounted inside the lampshade body, and a reflector cone mounted on the light-transmissive plate inside the lampshade right below the light source. When the light source is controlled to emit light, the light condenser condenses light from the light source onto the reflector cone, and the reflector cone and the light reflector reflects light rays, and therefore light rays are evenly distributed in the illumination without showing the normal distribution (Gaussian distribution) and avoiding dazzling.