Abstract:
A resistance-measuring circuit includes a controller for outputting a PWM signal and further for adjusting the duty cycle of the PWM signal, and a sampling circuit for processing the PWM signal and transmitting the processed PWM signal to the sensor. The sampling circuit samples the signal outputted from the sensor to generate a sampled signal with the voltage thereof changing according to any change in the duty cycle of the PWM signal, and further transmits the sampled signal to the controller. The controller obtains the real-time duty cycle of the PWM signal when the voltage of the sampled signal reaches a threshold voltage, and further calculates the exact resistance of the sensor according to the obtained real-time duty cycle of the PWM signal and the threshold voltage. An electronic device with the resistance-measuring circuit is also provided.
Abstract:
An electronic load for testing stability of a power voltage of a power source under test (PSUT) includes a voltage supply device, a field effect transistor (FET), an amplification circuit, and a current sampling resistor. The amplification circuit includes a first input, a second input, and an output. The voltage supply device is connected to the first input. The second input is connected to a source electrode of the FET. The output is connected to a gate electrode of the FET. A drain electrode of the FET is connected to the PSUT. One end of the current sampling resistor is grounded, and the other end of the current sampling resistor is connected to the source electrode of the FET and the second input. The voltage supply device outputs a control voltage. The amplification circuit amplifies the control voltage and drives the FET using the amplified control voltage.
Abstract:
A resistance-measuring circuit includes a controller for outputting a PWM signal and further for adjusting the duty cycle of the PWM signal, and a sampling circuit for processing the PWM signal and transmitting the processed PWM signal to the sensor. The sampling circuit samples the signal outputted from the sensor to generate a sampled signal with the voltage thereof changing according to any change in the duty cycle of the PWM signal, and further transmits the sampled signal to the controller. The controller obtains the real-time duty cycle of the PWM signal when the voltage of the sampled signal reaches a threshold voltage, and further calculates the exact resistance of the sensor according to the obtained real-time duty cycle of the PWM signal and the threshold voltage. An electronic device with the resistance-measuring circuit is also provided.
Abstract:
An ADC includes an analog signal input port for receiving analog signals, a reference voltage generation circuit for producing a reference voltage, a controllable switch, a control unit including a counter, an integral circuit, and a comparison circuit. The control unit outputs an on or off signal to turn on or turn off the controllable switch, the counter starts to count when the control unit outputs the off signal. The integral circuit executes an integral action to integrate the reference voltage and output a voltage enhanced gradually when the controllable switch is turned off. The comparison circuit outputs an interrupt signal to cause the counter to stop counting when comparing the voltage output by the integral circuit is higher than the voltage of the analog signals. The control unit determines a digital value corresponding to the analog signals according to a count value of counted by the counter.
Abstract:
A sensing circuit includes a plurality of sensors, a controller, a multiway switch, a linear optocoupler, and a logical control unit. The plurality of sensors are capable of measuring physical quantity, and each of the plurality of sensors is capable of generating a sensing signal in accordance with the physical quantity. The controller is capable of receiving and analyzing the sensing signals, and transforming the sensing signals into sensing events. The multiway switch is capable of selectively connecting one of the plurality of sensors to the controller. The linear optocoupler is connected between the plurality of sensors and the controller. The logical control unit is capable of controlling the multiway switch to selectively connect one of the plurality of sensors to the optocoupler, and generating a control signal to the controller, wherein the control signal indicating the one of the plurality of sensors connected to the controller.
Abstract:
A sensing circuit includes a plurality of sensors, a controller, a multiway switch, a linear optocoupler, and a logical control unit. The plurality of sensors are capable of measuring physical quantity, and each of the plurality of sensors is capable of generating a sensing signal in accordance with the physical quantity. The controller is capable of receiving and analyzing the sensing signals, and transforming the sensing signals into sensing events. The multiway switch is capable of selectively connecting one of the plurality of sensors to the controller. The linear optocoupler is connected between the plurality of sensors and the controller. The logical control unit is capable of controlling the multiway switch to selectively connect one of the plurality of sensors to the optocoupler, and generating a control signal to the controller, wherein the control signal indicating the one of the plurality of sensors connected to the controller.
Abstract:
A detection circuit includes an amplifier circuit, a rechargeable unit, a first comparator, a second comparator, a reference voltage providing circuit, a first resistor R1, a second resistor R2, and a processing unit. The amplifier circuit is connected to a bridge circuit sensor and amplifies signals output by the bridge circuit sensor to an output voltage Vo. The reference voltage providing circuit provides a reference voltage Vref1. A charge current of the rechargeable unit is (Vref1−V0)/(R1+R2), and a discharge current is (Vref1−VCC)/R1. The processing unit controls the rechargeable unit to be charged for a time period T1 and to be discharged during a time period T2. The processing unit then calculates the output voltage Vo according to an equation: (Vref1−V0)×T1/(R1+R2)=(Vref1−VCC)×T2/R1, and obtains the signals according to the output voltage Vo.
Abstract:
An electronic load for testing stability of a power voltage of a power source under test (PSUT) includes a voltage supply device, a field effect transistor (FET), an amplification circuit, and a current sampling resistor. The amplification circuit includes a first input, a second input, and an output. The voltage supply device is connected to the first input. The second input is connected to a source electrode of the FET. The output is connected to a gate electrode of the FET. A drain electrode of the FET is connected to the PSUT. One end of the current sampling resistor is grounded, and the other end of the current sampling resistor is connected to the source electrode of the FET and the second input. The voltage supply device outputs a control voltage. The amplification circuit amplifies the control voltage and drives the FET using the amplified control voltage.
Abstract:
A detection circuit includes an amplifier circuit, a rechargeable unit, a first comparator, a second comparator, a reference voltage providing circuit, a first resistor R1, a second resistor R2, and a processing unit. The amplifier circuit is connected to a bridge circuit sensor and amplifies signals output by the bridge circuit sensor to an output voltage Vo. The reference voltage providing circuit provides a reference voltage Vref1. A charge current of the rechargeable unit is (Vref1−V0)/(R1+R2), and a discharge current is (Vref1−VCC)/R1. The processing unit controls the rechargeable unit to be charged for a time period T1 and to be discharged during a time period T2. The processing unit then calculates the output voltage Vo according to an equation: (Vref1−V0)×T1/(R1+R2)=(Vref1−VCC)×T2/R1, and obtains the signals according to the output voltage Vo.
Abstract:
A handheld electronic device is provided. The electronic device includes an electrode unit, a storage unit, and a processing unit. The electrode unit includes a main body defining an annular cavity, a plurality of electrode groups, and a conductive element arranged within the annular cavity, wherein each of the plurality of the electrode groups includes a pair of conductive sheets, which are partially received in the annular cavity and are spaced apart from each other. When the electronic device is rotated to be in different orientation, the conductive element connects different electrode groups and the conductive sheets of the one of the electrode groups are connected to each other via the conductive element. The processing unit determines the connected electrode groups and executes a function corresponding to the determined electrode group. A function control method of the handheld electronic device is also provided.