摘要:
A method and system for imaging using labeled contrast agents and a magnetic resonance imaging (MRI) scanner are provided. The method comprises performing a prescan at a frequency selected to be substantially similar to a frequency of the labeled contrast agent and performing an examination scan at the frequency of the labeled contrast agent substantially immediately after administering the labeled contrast agent to a subject.
摘要:
An imaging and interventional system and methods are provided. The system comprises an imaging device for acquiring volumetric image data for an anatomical region of interest, a catheter for acquiring electrophysiological (EP) measurements of the anatomical region of interest, the catheter having at least one tracking coil for detecting signals indicative of a position of the catheter, and, a processor coupled to the catheter for receiving the EP measurements and signals indicative of the position of the catheter. The position of the catheter and EP measurements are combined and superimposed on a resultant image. The method comprises acquiring volumetric image data for an anatomical region of interest, acquiring position data for a catheter inserted in the region of interest, obtaining electrophysiological (EP) measurements for the region of interest and combining the image data, position data and EP measurements into a resultant image for use in the interventional procedure.
摘要:
An apparatus and method for correcting magnetic resonance temperature measurements is disclosed. In one aspect, the method identifies monitoring regions of interest outside a therapeutic region of interest. Next, a pulse sequence sensitive to changes in T1 and proton density is used to measure the temperature changes in these regions. Next, the PRFS is measured in these same regions. The PRFS in these regions will be caused both by the desired shift from temperature change, and the undesired shift from background magnetic field changes. Using the measured temperature changes from the T1-method, the component of the PRFS due to actual temperature changes is subtracted from the PRFS method, leaving only the component caused by the unwanted magnetic field changes. This analysis is performed separately for each region. At the end of this step, one has measured the change in background magnetic field within each region.
摘要:
A system and method for active MR tracking includes a magnetic resonance imaging (MRI) system having a plurality of gradient coils positioned about a bore of a magnet, an RF coil assembly positioned in the bore, and a pulse module. The MRI system also includes a polarization reversal switch controlled by the pulse module to transmit RF signals to the RF coil assembly coupled to the polarization reversal switch and an RF switch controlled by the pulse module to transmit the RF signals to the polarization reversal switch.
摘要:
In accordance with embodiments of the present technique an electrode pad for medical use is provides. The electrode pad comprises a support layer a plurality of electrodes mounted on the support layer and electrically insulated from one another, and a plurality of leads electrically coupled to the electrodes for selectively placing the electrodes at a desired electrical potential.
摘要:
A low noise imaging apparatus for producing Magnetic Resonance (MR) images of a subject and for substantially minimizing acoustic noise generated during imaging is provided. The imaging apparatus comprises a magnet assembly, a gradient coil assembly, and a rf coil assembly, wherein at least one of the magnet assembly, the gradient coil assembly and the rf coil assembly are configured to reduce the generation and transmission of acoustic noise.
摘要:
The present invention provides a method and system for automatically processing longitudinal magnetic resonance (MR) images comprising obtaining a first MR image, selecting a region of interest within the first MR image, obtaining at least one subsequent MR image, applying a registration relative to the first MR image and the at least one subsequent MR image wherein the region of interest in the at least one subsequent MR image is repositioned analogously to the region of interest in the first MR image. A computer readable program is provided configured to apply a registration relative to a first MR image and an at least one subsequent MR wherein a region of interest in the at least one subsequent MR image is repositioned analogously to a region of interest in the first MR image.
摘要:
An apparatus and method for correcting magnetic resonance temperature measurements is disclosed. In one aspect, the method identifies monitoring regions of interest outside a therapeutic region of interest. Next, a pulse sequence sensitive to changes in T1 and proton density is used to measure the temperature changes in these regions. Next, the PRFS is measured in these same regions. The PRFS in these regions will be caused both by the desired shift from temperature change, and the undesired shift from background magnetic field changes. Using the measured temperature changes from the T1-method, the component of the PRFS due to actual temperature changes is subtracted from the PRFS method, leaving only the component caused by the unwanted magnetic field changes. This analysis is performed separately for each region. At the end of this step, one has measured the change in background magnetic field within each region.
摘要:
A system and method for active MR tracking includes a magnetic resonance imaging (MRI) system having a plurality of gradient coils positioned about a bore of a magnet, an RF coil assembly positioned in the bore, and a pulse module. The MRI system also includes a polarization reversal switch controlled by the pulse module to transmit RF signals to the RF coil assembly coupled to the polarization reversal switch and an RF switch controlled by the pulse module to transmit the RF signals to the polarization reversal switch.
摘要:
A method and system for imaging using labeled contrast agents and a magnetic resonance imaging (MRI) scanner are provided. The method comprises performing a prescan at a frequency selected to be substantially similar to a frequency of the labeled contrast agent and performing an examination scan at the frequency of the labeled contrast agent substantially immediately after administering the labeled contrast agent to a subject.