摘要:
A non-contact signal propagation property evaluation system for ropes can be deployed for a number of different applications including, but not limited to, moving lines, e.g., crane or winch and static lines, e.g., mooring lines, stays, etc., to evaluate physical properties of the ropes and, in some cases, to help evaluate structural health of the ropes. The system includes a first transducer for generating ultrasonic waves, a second transducer for receiving ultrasonic waves propagated transversely through and around the rope, and a processor executing computer readable code to determine acoustic propagation properties of the rope.
摘要:
A system includes at least one strip of ferromagnetic material and a plurality of pulsing/receiving coil circuits. The at least one strip of ferromagnetic material is induced with a bias magnetic field and is coupled to a surface of a structure under test. The plurality of pulsing/receiving coil circuits are aligned with a surface of the at least one strip of the ferromagnetic material. The plurality of pulsing/receiving coil circuits are individually controllable by a number of channels to excite guided waves in the structure under test using at least one of active phased-array focusing or synthetic phased-array focusing of the guided waves.
摘要:
A system includes at least one strip of ferromagnetic material and a plurality of pulsing/receiving coil circuits. The at least one strip of ferromagnetic material is induced with a bias magnetic field and is coupled to a surface of a structure under test. The plurality of pulsing/receiving coil circuits are aligned with a surface of the at least one strip of the ferromagnetic material. The plurality of pulsing/receiving coil circuits are individually controllable by a number of channels to excite guided waves in the structure under test using at least one of active phased-array focusing or synthetic phased-array focusing of the guided waves.
摘要:
An ultrasonic method for removing and/or avoiding unwanted build-up on structures is provided, wherein the term build-up refers to, but is not limited to, ice, dirt, mud, or other wanted debris or contamination. Deicing or anti-icing structures of interest can include, but are not limited to, helicopter rotor blades, other helicopter blade components, fixed wing aircraft components, windshields in aircraft, automobiles, and other vehicles, ship hulls or other ship components, heat exchangers and other tubing where frost or ice could form, air-conditioning components, head lamp and other light coverings, bridge structures and components, and any structure where anti-icing or deicing would be beneficial. One or more ultrasonic actuators permanently embedded or coupled to the structure may be used accomplish the removal. The technique presented herein could also be utilized for non-destructive evaluation and structural health monitoring applications.
摘要:
A non-contact signal propagation property evaluation system for ropes can be deployed for a number of different applications including, but not limited to, moving lines, e.g., crane or winch and static lines, e.g., mooring lines, stays, etc., to evaluate physical properties of the ropes and, in some cases, to help evaluate structural health of the ropes. The system includes a first transducer for generating ultrasonic waves, a second transducer for receiving ultrasonic waves propagated transversely through and around the rope, and a processor executing computer readable code to determine acoustic propagation properties of the rope.
摘要:
A method of performing a non-destructive examination of a piece of material, having the steps of providing an angle beam wedge and at least two transducers placed upon the wedge, wherein the transducers are placed in a phased array, placing the wedge upon the piece of material to be examined, producing a guided wave into the piece of material to be examined, wherein the guided wave is placed into the material through a synthetically changed incident angle, receiving the guided wave from the piece of material, and determining one of a presence of defects and lack of defects in the piece of material from the received guided wave. Transducers used may include 360 degree guided wave, radial polarized units, parallel shear units for shear horizontal activation and guided wave wheel probes.
摘要:
A gas detection system for the detection of gas voids in piping systems. The gas detection system includes a transmitter, a receiver, and a computer. The transmitter is positioned at a designated point on a piping circuit and is adapted to transmit guided waves into the piping circuit. The receiver is positioned at a designated point distant from the transmitter and is adapted to receive the guided waves transmitted through the piping circuit by the transmitter. The computer analyzes and monitors the guided waves received by the receiver and determines the amount of gas in the piping circuit being analyzed.
摘要:
An ultrasonic method for removing and/or avoiding unwanted build-up on structures is provided, wherein the term build-up refers to, but is not limited to, ice, dirt, mud, or other wanted debris or contamination. Deicing or anti-icing structures of interest can include, but are not limited to, helicopter rotor blades, other helicopter blade components, fixed wing aircraft components, windshields in aircraft, automobiles, and other vehicles, ship hulls or other ship components, heat exchangers and other tubing where frost or ice could form, air-conditioning components, head lamp and other light coverings, bridge structures and components, and any structure where anti-icing or deicing would be beneficial. One or more ultrasonic actuators permanently embedded or coupled to the structure may be used accomplish the removal. The technique presented herein could also be utilized for non-destructive evaluation and structural health monitoring applications.
摘要:
A method of performing a non-destructive examination of a piece of material, having the steps of providing an angle beam wedge and at least two transducers placed upon the wedge, wherein the transducers are placed in a phased array, placing the wedge upon the piece of material to be examined, producing a guided wave into the piece of material to be examined, wherein the guided wave is placed into the material through a synthetically changed incident angle, receiving the guided wave from the piece of material, and determining one of a presence of defects and lack of defects in the piece of material from the received guided wave. Transducers used may include 360 degree guided wave, radial polarized units, parallel shear units for shear horizontal activation and guided wave wheel probes.