摘要:
A method for determining the location, in a coordinate system, of a target position for an invasive medical procedure on a patient. An entry mark that defines the coordinate system and indicates an entry position for the procedure is affixed to the patient. A site marker, which can be identified in a radioscopy image, is fixed in a known relative location in the coordinate system. At least two 2D radioscopy images of the patient, which both depict the respective site marker and the target position, are recorded from different recording directions. The location of the target position in the coordinate system is determined from the representation of the target position and from the representation of the site marker in the 2D radioscopy images and from the relative location of the site marker in the coordinate system.
摘要:
A layer orientation is determined for a 2D layer image that is to be generated from 3D image data of an anatomical object in the body of a patient. First, a model resembling the object that is imaged in the 3D image data is selected from a model pool. The model has an assigned default orientation in a permanently selected relative position with respect to the model. While the relative position is being maintained, the model is aligned with the 3D image data so as to match the model to the object with maximum coincidence. The default orientation established relative to the 3D image data is then selected as the layer orientation for the 3D image data.
摘要:
An X-ray facility has at least one x-ray emitter, an x-ray detector and an isocenter arranged along a central beam path between the x-ray emitter and the x-ray detector. The x-ray emitter and the x-ray detector are arranged on separate support arms. At least one rotary device is provided on each support arm, by way of which the x-ray emitter or the x-ray detector can be rotated about an axis of rotation intersecting the isocenter and not corresponding to the central beam. Wherein the axes of rotation match rotary devices assigned to one another on different support arms.
摘要:
An imaging apparatus has a capture device for capturing 1D or 2D image data. A position and/or orientation for a moving section of an examination object is captured, for example using a measuring device, for a plurality of capture times for the image data. A computation device reconstructs 3D volume data from the image data based on projection parameters and based on the position and/or orientation of the moving section of the examination object.
摘要:
In a method for geometrically correct association of at least two 3D image data of a patient, a marker field that defines a reference and is dimensionally stable and can be imaged in an x-ray image, is fixed in a stationary position relative to the patient. An x-ray apparatus is brought into first and second 3D acquisition positions. In each of the 3D acquisition positions, the x-ray apparatus acquires first 2D x-ray images for the associated 3D image data in various positions. The first and second 3D acquisition positions are selected such that a second 2D x-ray image that includes an image of at least a portion of the marker field is acquired in at least one respective position. The respective attitudes of the 3D acquisition position and the 3D image data in the reference system are determined from the image of the marker field in the second 2D x-ray image. First and second image data are geometrically correctly associated with one another according to their respective attitude.
摘要:
In a method for determining the projection geometry of an x-ray apparatus, an x-ray image of an object inside the patient is generated using the x-ray apparatus. A first measurement of a characteristic dimension of the imaged object is determined in the x-ray image. A second measurement of the characteristic dimension is determined using real geometry data of the object. The projection geometry is then determined using the first and second measurements.
摘要:
A medical system has an endoscopy system and an extracorporeal imaging system and a patient positioning device. The endoscopy system includes an intracorporeally movable capsule that is navigable within the body of a patient by a magnetic coil system within a tube-like working volume formed by the magnetic coil system. An encapsulated imaging unit in the endoscopy capsule obtains image data associated with a medical finding. The spatial coordinates of the medical finding identified by the encapsulated imaging unit are relayed to the extracorporeal image acquisition system to allow an extracorporeal image to be obtained based on those spatial coordinates.
摘要:
In an arrangement and associated method for positioning of apparatuses (in particular of a C-arm), the position and orientation of a C-arm and of a pointer instrument are determined by a navigation system, and an alignment of the C-arm is conducted based on the orientation of the pointer apparatus.
摘要:
In a device for capturing high energy radiation emitted from a radiation source within an examination object with a detector, the detector is arranged on a carriage mechanism that is mounted in a rotatable fashion around the examination object. The carriage mechanism is supported on a stand unit via a retaining mechanism, with an amplifier device being provided that amplifies the signals coming from the detector that are fed to the amplifier device via a signal guidance device. A data processing device is provided to process the amplified signals. By arranging the amplifier device and/or the data processing device essentially within the stand unit, a device is provided which can be flexibly utilized and which increases the patient's comfort during an examination.
摘要:
An endoscopy system has an endo-robot that is navigable within an anatomical lumen of a patient by interacting with a magnetic field generated by an extracorporeal magnet system. The patient lies on a patient bed that is movable in one or more directions and/or orientations, and an obstacle detects objects in the movement path of the endo-robot in the anatomical lumen and produces a signal that causes the position and/or orientation of the patient bed to be altered dependent thereon.