摘要:
An imaging apparatus has a capture device for capturing 1D or 2D image data. A position and/or orientation for a moving section of an examination object is captured, for example using a measuring device, for a plurality of capture times for the image data. A computation device reconstructs 3D volume data from the image data based on projection parameters and based on the position and/or orientation of the moving section of the examination object.
摘要:
An imaging apparatus has a capture device for capturing 1D or 2D image data. A position and/or orientation for a moving section of an examination object is captured, for example using a measuring device, for a plurality of capture times for the image data. A computation device reconstructs 3D volume data from the image data based on projection parameters and based on the position and/or orientation of the moving section of the examination object.
摘要:
In a method to extend the display range of 2D image recordings of an object region, particularly in medical applications, first 2D or 3D image data are acquired from a larger object region, and at least one additional set for 2D image data of a smaller object region is acquired that lies within the larger object region The first 2D or 3D image data are brought into registration with the additional 2D image data with a projection geometry. From the first 2D or 3D image data, an image data set is generated for an image display of the first object region, which is suitable for combination with the additional 2D image data. In the image display of the larger object region, at least temporarily, at least one display of the additional 2D image data is integrated, by image data in the first image data set, for the image display of the larger object region, being replaced with image data from the additional 2D image data representing the smaller image region. An overview of the larger object region is thus enabled, with the smaller object region of interest being displayed within the image in a more up-to-date fashion, as well as with higher resolution and/or higher contrast.
摘要:
A method is for automatic object marking in medical imaging. The method includes coupled displaying of different display modes of at least one image data record containing at least one object to be marked, in different display windows on at least one computer screen. The method further includes transferring the position of an initial point, selected by the user as part of an object-determining first marking, to the computer. Then, pattern recognition techniques are applied to the environment of the initial point of the first marking, resulting in a detailed high-resolution second marking of the object. Thereafter, reversible coding of the second marking of the image data records present in the computer takes place. Finally, the marked object is accentuated relative to its environment in the image data records on the screen.
摘要:
In a method and medical device for determining the coordinates of images of marks in a volume dataset, the marks are disposed on the surface of a subject, and the volume dataset represents the images of the marks and an image of at least the part of the subject on whose surface the marks are disposed. A data processing system stores the volume dataset. The volume dataset is picked up by a first imaging medical device and represents an image of at least a part of the subject on whose surface several marks disposed and images of the marks. With a navigation system, a relation of the coordinates of the volume dataset to the coordinates of the subject is provided in the form of a coordinate transformation during a registration.
摘要:
A method is for automatic object marking in medical imaging. The method includes coupled displaying of different display modes of at least one image data record containing at least one object to be marked, in different display windows on at least one computer screen. The method further includes transferring the position of an initial point, selected by the user as part of an object-determining first marking, to the computer. Then, pattern recognition techniques are applied to the environment of the initial point of the first marking, resulting in a detailed high-resolution second marking of the object. Thereafter, reversible coding of the second marking of the image data records present in the computer takes place. Finally, the marked object is accentuated relative to its environment in the image data records on the screen.
摘要:
In a method for expanding the display of a volume image of an object region, in particular in medical applications, in which at least one first image data set of a larger object region is made available, at least one second image data set of a smaller object region is acquired, the smaller object region lying within the larger object region, and the first 3D image data set is brought into registration with the second 3D image data set. A synthesized 3D image data set is generated from the first and second 3D image data sets and visualized in a display. The first 3D image data in the first 3D image data set represent the smaller object region, if necessary after a suitable adaptation of the first and/or of the second 3D image data set, are replaced by second 3D image data of the second 3D image data set with identical scaling and alignment of the image data sets. An overview of the larger object region thus is possible, and the smaller object region of interest the image can be represented with up-to-date data as well as a higher resolution and/or a higher contrast.
摘要:
In a method for expanding the display of a volume image of an object region, in particular in medical applications, in which at least one first image data set of a larger object region is made available, at least one second image data set of a smaller object region is acquired, the smaller object region lying within the larger object region, and the first 3D image data set is brought into registration with the second 3D image data set. A synthesized 3D image data set is generated from the first and second 3D image data sets and visualized in a display. The first 3D image data in the first 3D image data set represent the smaller object region, if necessary after a suitable adaptation of the first and/or of the second 3D image data set, are replaced by second 3D image data of the second 3D image data set with identical scaling and alignment of the image data sets. An overview of the larger object region thus is possible, and the smaller object region of interest the image can be represented with up-to-date data as well as a higher resolution and/or a higher contrast.
摘要:
In a method and medical device for determining the coordinates of images of marks in a volume dataset, the marks are disposed on the surface of a subject, and the volume dataset represents the images of the marks and an image of at least the part of the subject on whose surface the marks are disposed. A data processing system stores the volume dataset. The volume dataset is picked up by a first imaging medical device and represents an image of at least a part of the subject on whose surface several marks disposed and images of the marks. With a navigation system, a relation of the coordinates of the volume dataset to the coordinates of the subject is provided in the form of a coordinate transformation during a registration.
摘要:
In a method to extend the display range of 2D image recordings of an object region, particularly in medical applications, first 2D or 3D image data are acquired from a larger object region, and at least one additional set for 2D image data of a smaller object region is acquired that lies within the larger object region The first 2D or 3D image data are brought into registration with the additional 2D image data with a projection geometry. From the first 2D or 3D image data, an image data set is generated for an image display of the first object region, which is suitable for combination with the additional 2D image data. In the image display of the larger object region, at least temporarily, at least one display of the additional 2D image data is integrated, by image data in the first image data set, for the image display of the larger object region, being replaced with image data from the additional 2D image data representing the smaller image region. An overview of the larger object region is thus enabled, with the smaller object region of interest being displayed within the image in a more up-to-date fashion, as well as with higher resolution and/or higher contrast.