Abstract:
During a heating phase, injection of a jet of fuel and oxidant (fuel annularly enshrouding oxidant or oxidant annularly enshrouding fuel) from a fuel-oxidant nozzle is combusted in a combustion space. During a transition from the heating phase to a distributed combustion phase, an amount of a secondary portion of either the fuel or oxidant is injected as a jet into the combustion space while the primary portion of that same reactant from the fuel-oxidant nozzle is decreased. At some point during the transition phase, a jet of actuating fluid is injected at an angle towards the jet of reactants from the fuel-oxidant nozzle and/or towards the jet of the secondary portion of reactant. The jet of primary portions of reactants and/or secondary portion of reactant is caused to be bent/deviated towards the other of the two jets. The staging of the secondary portion of reactant is increased until a desired degrees of staging and commencement of a distributed combustion phase are achieved.
Abstract:
A feed gas is separated into a CO2-lean stream and a CO2-enriched stream at a CO2 enriching unit. The CO2-enriched gas is fed to a greenhouse to enhance plant growth. The feed gas may include air and/or vent gas from the greenhouse.
Abstract:
A burner has a fuel/oxidant nozzles and a pair of dynamical lances spaced on either side thereof that inject a jet of fuel and primary oxidant along a fuel injection axis, and jets of secondary oxidant, respectively. Jets of actuating fluid impinge against the jets of secondary oxidant to fluidically angle the jets of secondary oxidant away from the fuel injection axis. The action of the angling away together with staging of the oxidant between primary and secondary oxidant injections allows achievement of distributed combustion conditions.
Abstract:
During a heating phase, injection of a jet of fuel and oxidant (fuel annularly enshrouding oxidant or oxidant annularly enshrouding fuel) from a fuel-oxidant nozzle is combusted in a combustion space. During a transition from the heating phase to a distributed combustion phase, an amount of a secondary portion of either the fuel or oxidant is injected as a jet into the combustion space while the primary portion of that same reactant from the fuel-oxidant nozzle is decreased. At some point during the transition phase, a jet of actuating fluid is injected at an angle towards the jet of reactants from the fuel-oxidant nozzle and/or towards the jet of the secondary portion of reactant. The jet of primary portions of reactants and/or secondary portion of reactant is caused to be bent/deviated towards the other of the two jets. The staging of the secondary portion of reactant is increased until a desired degrees of staging and commencement of a distributed combustion phase are achieved.
Abstract:
Disclosed is a membrane-based method and system for treatment of flue gases from an oxy-combustion coal-fired boiler to recover approximately 90% (vol/vol) to approximately 95% (vol/vol) of the carbon dioxide in the flue gas and produce a carbon dioxide product having a carbon dioxide concentration of approximately 90% (vol/vol dry basis) to approximately 97% (vol/vol dry basis).
Abstract:
The invention relates to a combustion tool including a quarl block made of refractory material, the quarl block defining a quarl exit and a passage between the entry surface and quarl block, said tool including an injector of oxidizer and/or fuel that extends through the passage and opens into the quarl block, and also including a sheath that surrounds the injector in the passage section.
Abstract:
A burner recessed from a combustion space in a burner block adjacent the combustion space injects a secondary reactant (a second portion of a first reactant) around and upstream of a stream of a primary reactant (a first portion of the first reactant) and a stream of a second reactant in order to prevent or inhibit deposition of material from recirculating gases in the combustion space upon the burner. The first reactant is one of a fuel and an oxidant while the second reactant is the other of a fuel and an oxidant. The secondary stream may be injected from a continuous annulus formed in an outer body of the burner or from a plurality of radially spaced holes formed in the outer body. The primary stream is injected from one of an inner bore formed in an inner body of the burner and a reactant annulus defined between the inner and outer bodies while the second reactant is injected from the other of the inner bore and the reactant annulus.
Abstract:
A method of using a hybrid humidifier fuel cell for ensuring adequate humidification of a reactant gas stream in a fuel cell stack, during both steady-state, as well as transient operation. The device provides for improved performance through the use a primary humidification and a secondary humidification.
Abstract:
A burner has a fuel/oxidant nozzles and a pair of dynamical lances spaced on either side thereof that inject a jet of fuel and primary oxidant along a fuel injection axis, and jets of secondary oxidant, respectively. Jets of actuating fluid impinge against the jets of secondary oxidant to fluidically angle the jets of secondary oxidant away from the fuel injection axis. The action of the angling away together with staging of the oxidant between primary and secondary oxidant injections allows achievement of distributed combustion conditions.
Abstract:
During a heating phase, injection of a jet of fuel and oxidant (fuel annularly enshrouding oxidant or oxidant annularly enshrouding fuel) from a fuel-oxidant nozzle is combusted in a combustion space. During a transition from the heating phase to a distributed combustion phase, an amount of a secondary portion of either the fuel or oxidant is injected as a jet into the combustion space while the primary portion of that same reactant from the fuel-oxidant nozzle is decreased. At some point during the transition phase, a jet of actuating fluid is injected at an angle towards the jet of reactants from the fuel-oxidant nozzle and/or towards the jet of the secondary portion of reactant. The jet of primary portions of reactants and/or secondary portion of reactant is caused to be bent/deviated towards the other of the two jets. The staging of the secondary portion of reactant is increased until a desired degrees of staging and commencement of a distributed combustion phase are achieved.