Modeling Effectiveness of Verum
    1.
    发明申请
    Modeling Effectiveness of Verum 审中-公开
    验证的建模效果

    公开(公告)号:US20150134311A1

    公开(公告)日:2015-05-14

    申请号:US14075946

    申请日:2013-11-08

    IPC分类号: G06F19/00

    CPC分类号: G16H50/50 G16H10/20

    摘要: Modeling effectiveness of a verum includes dividing a group of patients into a placebo group and a verum group, defining a plurality of characteristics of the group of patients, and generating a model for the placebo group based on the plurality of characteristics. The method also includes generating a model for the verum group based on the plurality of characteristics, and isolating a placebo effect in the verum group in order to determine a pure verum effect.

    摘要翻译: 正确的建模功能包括将一组患者分成安慰剂组和正常组,定义患者组的多个特征,并且基于多个特征生成安慰剂组的模型。 该方法还包括基于多个特征为verum组生成模型,并且在verum组中分离安慰剂效应以便确定纯verum效应。

    Method for the computer-aided learning of a recurrent neural network for modeling a dynamic system
    2.
    发明授权
    Method for the computer-aided learning of a recurrent neural network for modeling a dynamic system 有权
    用于建模动态系统的循环神经网络的计算机辅助学习方法

    公开(公告)号:US09235800B2

    公开(公告)日:2016-01-12

    申请号:US13640543

    申请日:2011-04-12

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: A method for the computer-aided learning of a recurrent neural network for modeling a dynamic system which is characterized at respective times by an observable vector with one or more observables as entries is provided. The neural network includes both a causal network with a flow of information that is directed forwards in time and a retro-causal network with a flow of information which is directed backwards in time. The states of the dynamic system are characterized by first state vectors in the causal network and by second state vectors in the retro-causal network, wherein the state vectors each contain observables for the dynamic system and also hidden states of the dynamic system. Both networks are linked to one another by a combination of the observables from the relevant first and second state vectors and are learned on the basis of training date including known observables vectors.

    摘要翻译: 提供了一种用于对动态系统进行建模的循环神经网络的计算机辅助学习的方法,该动态系统在各自的时间由具有一个或多个可观察值的可观察向量表征为条目。 神经网络包括具有时间向前指向的信息流的因果网络和具有时间向后指向的信息流的复原因果网络。 动态系统的状态由因果网络中的第一状态向量和复原因果网络中的第二状态向量表征,其中状态向量每个都包含动态系统的可观察值,以及动态系统的隐藏状态。 两个网络通过相关的第一和第二状态向量的可观察的组合彼此相关联,并且基于包括已知的可观察向量的训练日期来学习。

    METHOD FOR THE COMPUTER-AIDED LEARNING OF A RECURRENT NEURAL NETWORK FOR MODELING A DYNAMIC SYSTEM
    3.
    发明申请
    METHOD FOR THE COMPUTER-AIDED LEARNING OF A RECURRENT NEURAL NETWORK FOR MODELING A DYNAMIC SYSTEM 有权
    用于建模动态系统的复现神经网络的计算机辅助学习方法

    公开(公告)号:US20130204815A1

    公开(公告)日:2013-08-08

    申请号:US13640543

    申请日:2011-04-12

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: A method for the computer-aided learning of a recurrent neural network for modeling a dynamic system which is characterized at respective times by an observable vector with one or more observables as entries is provided. The neural network includes both a causal network with a flow of information that is directed forwards in time and a retro-causal network with a flow of information which is directed backwards in time. The states of the dynamic system are characterized by first state vectors in the causal network and by second state vectors in the retro-causal network, wherein the state vectors each contain observables for the dynamic system and also hidden states of the dynamic system. Both networks are linked to one another by a combination of the observables from the relevant first and second state vectors and are learned on the basis of training date including known observables vectors.

    摘要翻译: 提供了一种用于对动态系统进行建模的循环神经网络的计算机辅助学习的方法,该动态系统在各自的时间由具有一个或多个可观察值的可观察向量表征为条目。 神经网络包括具有时间向前指向的信息流的因果网络和具有时间向后指向的信息流的复原因果网络。 动态系统的状态由因果网络中的第一状态向量和复原因果网络中的第二状态向量表征,其中状态向量每个都包含动态系统的可观察值,以及动态系统的隐藏状态。 两个网络通过相关的第一和第二状态向量的可观察的组合彼此相关联,并且基于包括已知的可观察向量的训练日期来学习。

    Computer-assisted analysis of a data record from observations

    公开(公告)号:US10521716B2

    公开(公告)日:2019-12-31

    申请号:US14849292

    申请日:2015-09-09

    IPC分类号: G06N3/08 G06N20/00 G05B13/02

    摘要: Computer-assisted analysis of a data record from observations is provided. The data record contains, for each observation, a data vector that includes values of input variables and a value of a target variable. A neuron network structure is learned from differently initialized neuron networks based on the data record. The neuron networks respectively include an input layer, one or more hidden layers, and an output layer. The input layer includes at least a portion of the input variables, and the output layer includes the target variable. The neuron network structure outputs the mean value of the target variables of the output layers of the neuron networks. Sensitivity values are determined by the neuron network structure and stored. Each sensitivity value is assigned an observation and an input variable. The sensitivity value includes the derivative of the target variable of the assigned observation with respect to the assigned input variable.

    Computer-assisted Analysis of a Data Record from Observations
    8.
    发明申请
    Computer-assisted Analysis of a Data Record from Observations 审中-公开
    从观测数据记录的计算机辅助分析

    公开(公告)号:US20160071006A1

    公开(公告)日:2016-03-10

    申请号:US14849292

    申请日:2015-09-09

    IPC分类号: G06N3/08 G06N99/00

    CPC分类号: G06N3/08 G05B13/027 G06N20/00

    摘要: Computer-assisted analysis of a data record from observations is provided. The data record contains, for each observation, a data vector that includes values of input variables and a value of a target variable. A neuron network structure is learned from differently initialized neuron networks based on the data record. The neuron networks respectively include an input layer, one or more hidden layers, and an output layer. The input layer includes at least a portion of the input variables, and the output layer includes the target variable. The neuron network structure outputs the mean value of the target variables of the output layers of the neuron networks. Sensitivity values are determined by the neuron network structure and stored. Each sensitivity value is assigned an observation and an input variable. The sensitivity value includes the derivative of the target variable of the assigned observation with respect to the assigned input variable.

    摘要翻译: 提供了从观察数据记录的计算机辅助分析。 对于每个观察,数据记录包含包含输入变量的值和目标变量的值的数据向量。 基于数据记录,从不同初始化的神经元网络中学习神经元网络结构。 神经元网络分别包括输入层,一个或多个隐藏层和输出层。 输入层包括输入变量的至少一部分,输出层包括目标变量。 神经网络结构输出神经元网络输出层目标变量的平均值。 灵敏度值由神经网络结构确定并存储。 每个灵敏度值都被分配一个观察值和一个输入变量。 灵敏度值包括相对于分配的输入变量的分配观察值的目标变量的导数。