METHOD AND DEVICE FOR DETERMINING THE POWER OUTPUT BY A PHOTOVOLTAIC INSTALLATION
    2.
    发明申请
    METHOD AND DEVICE FOR DETERMINING THE POWER OUTPUT BY A PHOTOVOLTAIC INSTALLATION 有权
    用于通过光伏安装确定功率输出的方法和装置

    公开(公告)号:US20140046610A1

    公开(公告)日:2014-02-13

    申请号:US14114201

    申请日:2012-04-25

    IPC分类号: G01R21/133

    摘要: A method for improving the usability of photovoltaic installations (PV installations) by taking account of shading information of adjacent PV installations for forecasting the power output by a relevant PV installation is provided. In particular, cloud movements and cloud shapes are taken into account. This improves the accuracy of the forecast. Here, it is advantageous that short-term forecasts in relation to e.g. the next 15 minutes are possible and a substitute energy source can be activated accordingly, in good time, prior to a dip in the power output by the PV installation. The invention can be used e.g. in the field of renewable energies, PV installations or smart grids.

    摘要翻译: 提供了一种通过考虑相邻光伏装置的阴影信息来提高光伏装置(光伏装置)的可用性的方法,用于预测相关PV装置的功率输出。 特别地,云运动和云形状被考虑在内。 这提高了预测的准确性。 在这里,有利的是,例如,短期预测。 接下来的15分钟是可能的,并且在PV安装的功率输出下降之前,可以及时激活替代能量源。 本发明可以例如使用。 在可再生能源领域,光伏装置或智能电网。

    METHOD FOR THE COMPUTER-ASSISTED MODELING OF A TECHNICAL SYSTEM
    4.
    发明申请
    METHOD FOR THE COMPUTER-ASSISTED MODELING OF A TECHNICAL SYSTEM 审中-公开
    一种技术系统的计算机辅助建模方法

    公开(公告)号:US20140201118A1

    公开(公告)日:2014-07-17

    申请号:US14239313

    申请日:2012-07-24

    IPC分类号: G06N3/10

    CPC分类号: G06N3/10 G06N3/04

    摘要: Disclosed is a method for the computer-assisted modeling of a technical system. One or more output vectors are modeled dependent on one or more input vectors by the learning process of a neural network on the basis of training data of known input vectors and output vectors. Each output vector comprises one or more operating variables of the technical system, and each input vector comprises one or more input variables that influence the operating variable(s). The neural network is a feedforward network with an input layer, a plurality of hidden layers, and an output layer. The output layer comprises a plurality of output clusters, each of which consists of one or more output neurons, the plurality of output clusters corresponding to the plurality of hidden layers. Each output cluster describes the same output vector and is connected to another hidden layer.

    摘要翻译: 公开了一种用于技术系统的计算机辅助建模的方法。 基于已知输入向量和输出向量的训练数据,通过神经网络的学习过程,依赖于一个或多个输入向量来建模一个或多个输出向量。 每个输出向量包括技术系统的一个或多个操作变量,并且每个输入向量包括影响操作变量的一个或多个输入变量。 神经网络是具有输入层,多个隐藏层和输出层的前馈网络。 输出层包括多个输出簇,每个输出簇由一个或多个输出神经元组成,多个输出簇对应于多个隐藏层。 每个输出集群描述相同的输出向量,并连接到另一个隐藏层。

    Modeling Effectiveness of Verum
    5.
    发明申请
    Modeling Effectiveness of Verum 审中-公开
    验证的建模效果

    公开(公告)号:US20150134311A1

    公开(公告)日:2015-05-14

    申请号:US14075946

    申请日:2013-11-08

    IPC分类号: G06F19/00

    CPC分类号: G16H50/50 G16H10/20

    摘要: Modeling effectiveness of a verum includes dividing a group of patients into a placebo group and a verum group, defining a plurality of characteristics of the group of patients, and generating a model for the placebo group based on the plurality of characteristics. The method also includes generating a model for the verum group based on the plurality of characteristics, and isolating a placebo effect in the verum group in order to determine a pure verum effect.

    摘要翻译: 正确的建模功能包括将一组患者分成安慰剂组和正常组,定义患者组的多个特征,并且基于多个特征生成安慰剂组的模型。 该方法还包括基于多个特征为verum组生成模型,并且在verum组中分离安慰剂效应以便确定纯verum效应。

    Method for the computer-aided learning of a recurrent neural network for modeling a dynamic system
    6.
    发明授权
    Method for the computer-aided learning of a recurrent neural network for modeling a dynamic system 有权
    用于建模动态系统的循环神经网络的计算机辅助学习方法

    公开(公告)号:US09235800B2

    公开(公告)日:2016-01-12

    申请号:US13640543

    申请日:2011-04-12

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: A method for the computer-aided learning of a recurrent neural network for modeling a dynamic system which is characterized at respective times by an observable vector with one or more observables as entries is provided. The neural network includes both a causal network with a flow of information that is directed forwards in time and a retro-causal network with a flow of information which is directed backwards in time. The states of the dynamic system are characterized by first state vectors in the causal network and by second state vectors in the retro-causal network, wherein the state vectors each contain observables for the dynamic system and also hidden states of the dynamic system. Both networks are linked to one another by a combination of the observables from the relevant first and second state vectors and are learned on the basis of training date including known observables vectors.

    摘要翻译: 提供了一种用于对动态系统进行建模的循环神经网络的计算机辅助学习的方法,该动态系统在各自的时间由具有一个或多个可观察值的可观察向量表征为条目。 神经网络包括具有时间向前指向的信息流的因果网络和具有时间向后指向的信息流的复原因果网络。 动态系统的状态由因果网络中的第一状态向量和复原因果网络中的第二状态向量表征,其中状态向量每个都包含动态系统的可观察值,以及动态系统的隐藏状态。 两个网络通过相关的第一和第二状态向量的可观察的组合彼此相关联,并且基于包括已知的可观察向量的训练日期来学习。

    METHOD FOR THE COMPUTER-AIDED LEARNING OF A RECURRENT NEURAL NETWORK FOR MODELING A DYNAMIC SYSTEM
    7.
    发明申请
    METHOD FOR THE COMPUTER-AIDED LEARNING OF A RECURRENT NEURAL NETWORK FOR MODELING A DYNAMIC SYSTEM 有权
    用于建模动态系统的复现神经网络的计算机辅助学习方法

    公开(公告)号:US20130204815A1

    公开(公告)日:2013-08-08

    申请号:US13640543

    申请日:2011-04-12

    IPC分类号: G06N3/08

    CPC分类号: G06N3/08

    摘要: A method for the computer-aided learning of a recurrent neural network for modeling a dynamic system which is characterized at respective times by an observable vector with one or more observables as entries is provided. The neural network includes both a causal network with a flow of information that is directed forwards in time and a retro-causal network with a flow of information which is directed backwards in time. The states of the dynamic system are characterized by first state vectors in the causal network and by second state vectors in the retro-causal network, wherein the state vectors each contain observables for the dynamic system and also hidden states of the dynamic system. Both networks are linked to one another by a combination of the observables from the relevant first and second state vectors and are learned on the basis of training date including known observables vectors.

    摘要翻译: 提供了一种用于对动态系统进行建模的循环神经网络的计算机辅助学习的方法,该动态系统在各自的时间由具有一个或多个可观察值的可观察向量表征为条目。 神经网络包括具有时间向前指向的信息流的因果网络和具有时间向后指向的信息流的复原因果网络。 动态系统的状态由因果网络中的第一状态向量和复原因果网络中的第二状态向量表征,其中状态向量每个都包含动态系统的可观察值,以及动态系统的隐藏状态。 两个网络通过相关的第一和第二状态向量的可观察的组合彼此相关联,并且基于包括已知的可观察向量的训练日期来学习。

    Computer-assisted analysis of a data record from observations

    公开(公告)号:US10521716B2

    公开(公告)日:2019-12-31

    申请号:US14849292

    申请日:2015-09-09

    IPC分类号: G06N3/08 G06N20/00 G05B13/02

    摘要: Computer-assisted analysis of a data record from observations is provided. The data record contains, for each observation, a data vector that includes values of input variables and a value of a target variable. A neuron network structure is learned from differently initialized neuron networks based on the data record. The neuron networks respectively include an input layer, one or more hidden layers, and an output layer. The input layer includes at least a portion of the input variables, and the output layer includes the target variable. The neuron network structure outputs the mean value of the target variables of the output layers of the neuron networks. Sensitivity values are determined by the neuron network structure and stored. Each sensitivity value is assigned an observation and an input variable. The sensitivity value includes the derivative of the target variable of the assigned observation with respect to the assigned input variable.