Abstract:
A method and apparatus for controlling bandwidth in a Virtual Private Network assigns and allocates transmission bandwidth to packet VPNs for either connectionless or connection-oriented communication. The method creates two views of transmission facilities: a user plane view and a control plane view. In the user plane view, the bandwidth of the transmission facility is split into quantified and identified partitions. In the control plane view, transmission facilities are represented as logical links forming a topology that can be used for the purpose of routing the VPN. The two views are tied together by assigning user plane partitions to VPN control plane links. As a result, the allocation of bandwidth to VPNs becomes a controllable and viewable entity, thereby facilitating management and QoS provisioning in a VPN network.
Abstract:
A method and apparatus for controlling bandwidth in a Virtual Private Network assigns and allocates transmission bandwidth to packet VPNs for either connectionless or connection-oriented communication. The method creates two views of transmission facilities: a user plane view and a control plane view. In the user plane view, the bandwidth of the transmission facility is split into quantified and identified partitions. In the control plane view, transmission facilities are represented as logical links forming a topology that can be used for the purpose of routing the VPN. The two views are tied together by assigning user plane partitions to VPN control plane links. As a result, the allocation of bandwidth to VPNs becomes a controllable and viewable entity, thereby facilitating management and QoS provisioning in a VPN network.
Abstract:
Network resources are assigned as dedicated, shared, or public network resources. The resources are then allocated to L1-VPN subscribers on demand. Splitting assignment of the resources from allocation of the resources enables resources to be assigned to more than one subscriber on the network. Temporary physical dedication of the resources to one of the subscribers may be accomplished by allocating the assigned resources on demand, so that particular subscribers are provided with dedicated resources on an as-needed basis. Dedication of the network resources allows the network resources to be configured, managed, and controlled by the customers. The network resources may be optical resources and the links may be time slots on particular fibers. Optionally, by enabling prioritization to cause displacement of link allocations, additional flexibility may be obtained in allocating links to L1-VPNs such as by allowing the use of private and shared resources by other subscribers.
Abstract:
A path oriented routing system and method for packet switching networks with end-to-end internal protocols. It allows switch pairs to communicate over multiple paths without packet disordering. A distributed loop-free shortest path algorithm assigns a number to a path at the time it is created and this number remains valid through path changes. Consequently, existing traffic can be maintained on existing paths, while new traffic is assigned to the current (i.e. new) shortest paths.
Abstract:
A method and apparatus for controlling bandwidth in a Virtual Private Network assigns and allocates transmission bandwidth to packet VPNs for either connectionless or connection-oriented communication. The method creates two views of transmission facilities: a user plane view and a control plane view. In the user plane view, the bandwidth of the transmission facility is split into quantified and identified partitions. In the control plane view, transmission facilities are represented as logical links forming a topology that can be used for the purpose of routing the VPN. The two views are tied together by assigning user plane partitions to VPN control plane links. As a result, the allocation of bandwidth to VPNs becomes a controllable and viewable entity, thereby facilitating management and QoS provisioning in a VPN network.
Abstract:
A method is provided for co-modelling and analyzing a packet network operating over an optical network. The method includes co-modelling the packet network and the optical network by generating a basic packet capacity based on a simulated packet network comprising packet network topology information and packet traffic information and generating a basic optical capacity based on a simulated packet transport network comprising optical network topology information and the basic packet capacity. The output of the co-modelled network is then used to perform analysis on the simulated packet transport network. For example, embodiments of the present invention provide methods of survivability analysis for providing packet link is protection in either the packet network or the optical network of the simulated packet transport network.
Abstract:
Network resources are assigned as dedicated, shared, or public network resources. The resources are then allocated to L1-VPN subscribers on demand. Splitting assignment of the resources from allocation of the resources enables resources to be assigned to more than one subscriber on the network. Temporary physical dedication of the resources to one of the subscribers may be accomplished by allocating the assigned resources on demand, so that particular subscribers are provided with dedicated resources on an as-needed basis. Dedication of the network resources allows the network resources to be configured, managed, and controlled by the customers. The network resources may be optical resources and the links may be time slots on particular fibers. Optionally, by enabling prioritization to cause displacement of link allocations, additional flexibility may be obtained in allocating links to L1-VPNs such as by allowing the use of private and shared resources by other subscribers.
Abstract:
Network resources are assigned as dedicated, shared, or public network resources. The resources are then allocated to L1-VPN subscribers on demand. Splitting assignment of the resources from allocation of the resources enables resources to be assigned to more than one subscriber on the network. Temporary physical dedication of the resources to one of the subscribers may be accomplished by allocating the assigned resources on demand, so that particular subscribers are provided with dedicated resources on an as-needed basis. Dedication of the network resources allows the network resources to be configured, managed, and controlled by the customers. The network resources may be optical resources and the links may be time slots on particular fibers. Optionally, by enabling prioritization to cause displacement of link allocations, additional flexibility may be obtained in allocating links to L1-VPNs such as by allowing the use of private and shared resources by other subscribers.
Abstract:
A method and apparatus for controlling bandwidth in a Virtual Private Network assigns and allocates transmission bandwidth to packet VPNs for either connectionless or connection-oriented communication. The method creates two views of transmission facilities: a user plane view and a control plane view. In the user plane view, the bandwidth of the transmission facility is split into quantified and identified partitions. In the control plane view, transmission facilities are represented as logical links forming a topology that can be used for the purpose of routing the VPN. The two views are tied together by assigning user plane partitions to VPN control plane links. As a result, the allocation of bandwidth to VPNs becomes a controllable and viewable entity, thereby facilitating management and QoS provisioning in a VPN network.
Abstract:
Network resources are assigned as dedicated, shared, or public network resources. The resources are then allocated to L1-VPN subscribers on demand. Splitting assignment of the resources from allocation of the resources enables resources to be assigned to more than one subscriber on the network. Temporary physical dedication of the resources to one of the subscribers may be accomplished by allocating the assigned resources on demand, so that particular subscribers are provided with dedicated resources on an as-needed basis. Dedication of the network resources allows the network resources to be configured, managed, and controlled by the customers. The network resources may be optical resources and the links may be time slots on particular fibers. Optionally, by enabling prioritization to cause displacement of link allocations, additional flexibility may be obtained in allocating links to L1-VPNs such as by allowing the use of private and shared resources by other subscribers.