Abstract:
Operating channel/insufflation port assemblies are disclosed herein which facilitate the operation of percutaneous surgical procedures with remotely operable instrumentation. In one of the disclosed assemblies, an operating channel/insufflation port member defines an operating channel sized to receive remotely operable instrumentation, and an insufflation lumen. The port assembly is anchorable in place, extending percutaneously into the stomach with remotely operable instrumentation being advanceable through the operating channel and into the stomach, and with CO.sub.2 being passable into the stomach through the insufflation lumen. An insufflation valve member, connectable to said insufflation port, provides means for variably controlling the supply of CO.sub.2 into the stomach while a sealing member prevents gas leakage through the operating channel during operation/insufflation by providing a seal between the port member and the remotely operable instrumentation received therethrough.In a second disclosed assembly, the operating channel/insufflation port member defines an operating channel sized to receive remotely operable instrumentation, and a dual purpose inflation/insufflation lumen. The port assembly is anchorable in place by a balloon which is inflatable through the inflation/insufflation lumen. After the balloon has been inflated, an inflation/insufflation tube within the inflation/insufflation lumen is advanced to seal the inflated balloon and open an insufflation port, through which a positive pressure may be maintain within the stomach during a subsequent surgical procedure performed through the operating channel. Also provided are a set of seals which prevent gas leakage both during and after operation/insufflation.
Abstract:
A technique for invaginating the esophagus at the gastroesophageal junction is disclosed, as well as an invagination device useful in the described technique. The invagination device includes an introducer guide which has an outside diameter approximating that of the esophagus and a plurality of needle-receiving lumens extending to its outer diametric surface. The invagination device also has an engagement assembly which includes 10 needles, each having a retracted position in which they lie within the needle-receiving lumens of the introducer guide, and an extended position in which they extend out of the lumens and project radially from the guide for engagement with the esophagus at the gastroesophageal junction. The invagination device is introduced transorally into the esophagus, its engagement assembly is activated to place the needles in their extended position in engagement with the esophagus, and the engaged invagination device is advanced the toward the stomach to fold the attached esophagus beyond the gastroesophageal junction. A remotely operable fastening assembly, which has been introduced into the stomach through an operating channel/insufflation port, is then operated to fasten the invaginated gastroesophageal junction to the surrounding involuted fundic wall. Finally, the needles are retracted back into their needle-receiving lumens and the invagination device and the fastening assembly are removed from the body of the patient. This minimally-invasive technique accomplishes the formation of a new valve between the esophagus and stomach, thus preventing acid reflux.
Abstract:
Disclosed herein is an endoscopic extraction device which retains its operative usefulness for longer periods of time, and therefore need to be replaced less frequently. This extended instrument life is accomplished through the use of a composite wire construction, which includes, an inner monofilament wire of nitinol material surrounded by six stranded stainless steel wires. A wire construction in which a nitinol wire is surrounded by five stranded stainless steel wires is also disclosed. After constructing a wire basket in the normal manner using this material, heat is applied to the formed basket in its pre-formed shape to set the memory characteristics of the inner nitinol core.
Abstract:
Gastrostomy feeding ports are disclosed which remain positively sealed after repeated and extensive use. In one embodiment, a valve housing defines an inner passageway to provide fluid communication into a long term indwelling catheter and includes a rigid compression collar portion which defines a valve member receiving cavity within the inner passageway. The resilient valve member has an outer peripheral edge which generally conforms in shape to the valve member receiving cavity but is larger in dimension than the cavity when uncompressed. The resilient valve member also includes an outer wall portion which extends away from the outer peripheral edge of the diaphragm portion and which generally conforms in shape to the cavity. The resilient valve member is compressively fitted within the receiving cavity by the advancing of the outer wall portion into said cavity to thereby cause the outer peripheral edge to be compressed in dimension to fit within the cavity, with the compression collar pressing inwardly against the outer peripheral edge of the diaphragm portion to apply laterally compressive forces which bias the slit toward a normally closed position. Additional embodiments are disclosed which provide for the direct conversion of an implanted PEG tube into a low profile feeding port, and which further provide for the direct secure connection to an enteral feeding tube adapter.