Abstract:
A fixer fluid having reduced kogation. The fixer fluid includes at least one phosphate ester surfactant and at least one cationic polymer, wherein the fixer fluid is formulated so that the at least one phosphate ester surfactant does not precipitate with the at least one cationic polymer. The at least one phosphate ester surfactant may be an anionic phosphate ester surfactant or an amphoteric phosphate ester surfactant. If the at least one phosphate ester surfactant is an anionic phosphate ester surfactant, it may have greater than or equal to approximately 2 moles of ethylene oxide per mole of the phosphate ester surfactant. The present invention also relates to an inkjet ink having reduced kogation and a method of producing a fixer fluid having reduced kogation.
Abstract:
An inkjet drop ejection system comprises a combination of printhead components and ink, mutually tuned to maximize operating characteristics of the printhead and print quality and dry time of the ink. Use of a short shelf (distance from ink source to ink firing element), on the order of 55 microns, provides a very high speed refill. However, it is a characteristic of high speed refill that it has a tendency for being over-damped. To provide the requisite damping, the ink should have a viscosity greater than about 2 cp. In this way, the ink and architecture work together to provide a tuned system that enables stable operation at high frequencies. One advantage of the combination of a pigment and a dispersant in the ink is the resultant higher viscosity provided. The high speed would be of little value if the ink did not have a fast enough rate of drying. This is accomplished by the addition of alcohols or alcohol(s) and surfactant(s) to the ink. Fast dry times are achieved with a combination of alcohols, such as iso-propyl alcohol with a 4 or 5 carbon alcohol or with iso-propyl alcohol plus surfactant(s). One preferred embodiment of a short shelf (90 to 130 microns), ink viscosity of about 3 cp, and surface tension of about 54 provides a high speed drop generator capable of operating at about 12 KHz. Reducing the shelf length to about 55 microns, in combination with rotating the substrate at an angle to the scan direction, permits maximum drop generator operation as high as about 20 KHz. As a consequence of employing pigment-based inks, high optical densities are realized, along with excellent permanence (no fade and better waterfastness), and good stability. The combination of preferred ink and pen architecture provides good drop generator stability.
Abstract:
An ink-jet ink composition and a method of printing with the ink composition comprising at least one colorant and an aqueous vehicle comprising at least one refractory or noble metal-reactive component.
Abstract:
An aqueous inkjet ink and an ink set using such ink, the ink comprising as colorant, a Copper Phthalocyanine (CuPc) dye compound having formula II: wherein (x,y,z)=4.
Abstract:
An inkjet drop ejection system comprises a combination of printhead components and ink, mutually tuned to maximize operating characteristics of the printhead and print quality and dry time of the ink. Use of a short shelf (distance from ink source to ink firing element), on the order of 55 microns, provides a very high speed refill. However, it is a characteristic of high speed refill that it has a tendency for being overdamped. To provide the requisite damping, the ink should have a viscosity greater than about 2 cp. In this way, the ink and architecture work together to provide a tuned system that enables stable operation at high frequencies. One advantage of the combination of a pigment and a dispersant in the ink is the resultant higher viscosity provided. The high speed would be of little value if the ink did not have a fast enough rate of drying. This is accomplished by the addition of alcohols or alcohol(s) and surfactant(s) to the ink. Fast dry times are achieved with a combination of alcohols, such as isopropyl alcohol with a 4 or 5 carbon alcohol or with iso-propyl alcohol plus surfactant(s). One preferred embodiment of a short shelf (90 to 130 microns), ink viscosity of about 3 cp, and surface tension of about 54 provides a high speed drop generator capable of operating at about 12 KHz. Reducing the shelf length to about 55 microns, in combination with rotating the substrate at an angle to the scan direction, permits maximum drop generator operation as high as about 20 KHz. As a consequence of employing pigment-based inks, high optical densities are realized, along with excellent permanence (no fade and better waterfastness), and good stability. The combination of preferred ink and pen architecture provides good drop generator stability.