摘要:
A ball and socket joint is disclosed. The joint comprises two hard, self-adjusting, tapered side bearing halves with inner spherical faces. The inner spherical faces are lined with a low friction synthetic filament impregnated fabric overlay bonded to the spherical face by stiff reinforced polymer based adhesives, ceramic based adhesives or other high temperature adhesives. The bearing halves receive a ball stud sphere and are compression pre-loaded into a socket. Bearing taper is controlled so that minute filament particles fill microscopic low places of the stud sphere as the sphere moves or articulates within the bearing against the compressed fabric overlay. The sphere becomes very smooth and minimizes friction within the joint and improves bearing life and performance of the joint. The fabric may also be bonded to an inner surface of a hemispherical cup which is placed adjacent the bearing halves prior to assembly of the joint.
摘要:
An in-line, non-condensible gas trap for a liquid line which includes an interior mesh tube through which fluid can flow to a trap outlet. Non-condensible gas is trapped outwardly of the mesh tube due to capillary action and periodically the collected gas is vented thereby ridding the liquid line of the non-condensible gas. The present trap operates well in outer space environments (zero gravity) as well as normal ambient conditions (1 g).
摘要:
The coolant fluid evaporated in a compact heat absorbing panel (12) utilizing monogroove heat pipes in a pumped two-phase system is replenished through a liquid inlet control valve (35) under the control of an ultrasonic liquid presence detector (40) which is connected to the panel (10). The detector (40) maintains the desired liquid quantity in the panel's liquid coolant channels (25), thereby dynamically responding to varying heat loads.
摘要:
A screen mesh artery (50) supported concentrically within the evaporator section (20) of a heat pipe liquid channel (27) retains liquid (41) in the channel (27) and thereby assures continued and uniform liquid feed to the heat pipe evaporation section (20) during periods of excessive heat transfer.
摘要:
A composite stud having a shank with a recess at one end receives a stem formed on a ball. The stem and recess have any suitable shape and preferably a shape that prevents rotation of the ball relative to the shank. A further embodiment has a shank with an extension at one end for insertion into a bore in a ball. The extension is deformed to effect a positive connection.
摘要:
A monogroove heat pipe has a single central manifold communicating with plural parallel connected evaporators and a single condenser. The invention is directed to a tubular screen device which is axially positioned within the liquid channel of the manifold. A number of longitudinally spaced holes are formed in the body of the screen device, each hole being defined by cusp edges which are turned outwardly from the screen body into joint ends of the condenser and evaporator liquid channels. The existence of the screen material at the joint between condenser, evaporators, and the manifold assists the establishment of a primed condition in the heat pipe, even in a zero "g" environment for any initial liquid distribution within the heat pipe.
摘要:
An interrupted monogroove slot in a heat pipe facilitates priming of the heat pipe under zero gravity conditions by preventing the monogroove slot from completely priming before the liquid channel is primed.
摘要:
A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).