摘要:
The present invention describes a communications system having a first link partner and a second link partner that are connected by a communications link having at least four pairs of conductors. According to IEEE Standard 802.3 (e.g. Ethernet) for 1000Base-T, a data link is maintained (in a period absent data transmission) by sending idle signals over four pairs of conductors of the cable to maintain a logical connection. This idle signal scheme is replaced with an alternate idle signaling scheme that uses only two pairs of conductors to maintain a logical connection and therefore can operate with using lower power. The other two pairs of conductors of the four pairs of conductors are unused to maintain a logical connection absent data transfer, and therefore can be used to implement a Suspend Mode of operation. During Suspend Mode, the physical layer of each link partner powers down unnecessary circuitry so as to operate in a low power environment. To initiate the Suspend Mode, idle signals are sent on one of the un-used pairs of the conductors mentioned above. To exit Suspend mode, idle signals are sent on respective conductors simultaneously.
摘要:
The present invention describes a communications system having a first link partner and a second link partner that are connected by a communications link having at least four pairs of conductors. According to IEEE Standard 802.3 (e.g. Ethernet) for 1000Base-T, a data link is maintained (in a period absent data transmission) by sending idle signals over four pairs of conductors of the cable to maintain a logical connection. This idle signal scheme is replaced with an alternate idle signaling scheme that uses only two pairs of conductors to maintain a logical connection and therefore can operate with using lower power. The other two pairs of conductors of the four pairs of conductors are unused to maintain a logical connection absent data transfer, and therefore can be used to implement a Suspend Mode of operation. During Suspend Mode, the physical layer of each link partner powers down unnecessary circuitry so as to operate in a low power environment. To initiate the Suspend Mode, idle signals are sent on one of the un-used pairs of the conductors mentioned above. To exit Suspend mode, idle signals are sent on respective conductors simultaneously.
摘要:
The present invention describes a communications system having a first link partner and a second link partner that are connected by a communications link having at least four pairs of conductors. According to IEEE Standard 802.3 (e.g. Ethernet) for 1000Base-T, a data link is maintained (in a period absent data transmission) by sending idle signals over four pairs of conductors of the cable to maintain a logical connection. This idle signal scheme is replaced with an alternate idle signaling scheme that uses only two pairs of conductors to maintain a logical connection and therefore can operate with using lower power. The other two pairs of conductors of the four pairs of conductors are unused to maintain a logical connection absent data transfer, and therefore can be used to implement a Suspend Mode of operation. During Suspend Mode, the physical layer of each link partner powers down unnecessary circuitry so as to operate in a low power environment. To initiate the Suspend Mode, idle signals are sent on one of the un-used pairs of the conductors mentioned above. To exit Suspend mode, idle signals are sent on respective conductors simultaneously.
摘要:
The present invention provides a way of placing a physical layer device into a standby mode. After a link is established between multiple devices, a determination is made whether the device has data to transmit or whether a standby request was received from a link partner. If a standby request was received or the device has no data to transmit, standby mode is entered. In standby mode, unneeded circuitry is powered down. A transmitter in a channel and a receive path in a separate channel remain powered. While operating in standby mode, the PHY layer continuously transmits a standby code on the one or more channels that are not powered down. Standby mode is discontinued when a transceiver has data to transmit or when energy is detected on the powered down channels. Standby mode is also discontinued when no standby code is received, indicating a disconnect between devices.
摘要:
A communication system includes a first device and a second device that can advertise multiple capabilities using communication links. A first type of auto-negotiation between the first and second devices is performed using a first communication link between the devices. A second communication link between the devices is used to facilitate a second type of auto-negotiation. For example, the first communication link can include pairs A and B of an IEEE Std. 802.3 four twisted pair cable. The second communication link can include pairs C and D of the cable.
摘要:
The present invention provides a way of placing a physical layer device into a standby mode. After a link is established between multiple devices, a determination is made whether the device has data to transmit or whether a standby request was received from a link partner. If a standby request was received or the device has no data to transmit, standby mode is entered. In standby mode, unneeded circuitry is powered down. A transmitter in a channel and a receive path in a separate channel remain powered. While operating in standby mode, the PHY layer continuously transmits a standby code on the one or more channels that are not powered down. Standby mode is discontinued when a transceiver has data to transmit or when energy is detected on the powered down channels. Standby mode is also discontinued when no standby code is received, indicating a disconnect between devices.
摘要:
The invention allows data originating according to a first communications standard to be transmitted over a physical layer using a second communications standard. According to an embodiment of the invention, a data stream is received from a physical transmission medium that uses particular first communications standard. Next, a data type identification (DTID) is appended to each byte in the data stream, thereby creating a technology independent data stream having a particular bit rate. This bit rate is then matched to a different bit rate that corresponds to a second communications standard. The technology independent data stream is then transmitted over a physical transmission medium that uses the second communications standard.
摘要:
The invention allows data originating according to a first communications standard to be transmitted over a physical layer using a second communications standard. According to an embodiment of the invention, a data stream is received from a physical transmission medium that uses particular first communications standard. Next, a data type identification (DTID) is appended to each byte in the data stream, thereby creating a technology independent data stream having a particular bit rate. This bit rate is then matched to a different bit rate that corresponds to a second communications standard. The technology independent data stream is then transmitted over a physical transmission medium that uses the second communications standard.
摘要:
Methods and Systems for transmitting data originating according to a first communications standard over a physical layer using a second communications standard are provided. A data stream is received from a physical transmission medium that uses particular first communications standard. Next, a data type identification (DTID) is appended to each byte in the data stream, thereby creating a technology independent data stream having a particular bit rate. This bit rate is then matched to a different bit rate that corresponds to a second communications standard. The technology independent data stream is then transmitted over a physical transmission medium that uses the second communications standard.
摘要:
A communication system includes a first device and a second device that can advertise multiple capabilities using communication links. A first type of auto-negotiation between the first and second devices is performed using a first communication link between the devices. A second communication link between the devices is used to facilitate a second type of auto-negotiation. For example, the first communication link can include pairs A and B of an IEEE Std. 802.3 four twisted pair cable. The second communication link can include pairs C and D of the cable.