摘要:
A SAG technique is used to grow the ridge structure in a photonic semiconductor device, such as an electroabsorption modulator integrated with a distributed feedback laser (EML) assembly. The adoption of this SAG technique to grow the ridge structure results in the formation of a self-assembled and self-aligned ridge structure that has a very precise configuration. The use of this process enables straight, bent and tilted ridge structures to be formed with high precision. In addition, because the ridge structure is self-assembled and self-aligned, a lesser number of processing steps are required to create the photonic device in comparison to the known approach that uses wet chemical etching techniques to form the ridge structure. The high precision of the ridge structure and the lesser number of processing steps needed to create the device increase manufacturing yield and allow overall cost of the device to be reduced.
摘要:
A SAG technique is used to grow the ridge structure in a photonic semiconductor device, such as an electroabsorption modulator integrated with a distributed feedback laser (EML) assembly. The adoption of this SAG technique to grow the ridge structure results in the formation of a self-assembled and self-aligned ridge structure that has a very precise configuration. The use of this process enables straight, bent and tilted ridge structures to be formed with high precision. In addition, because the ridge structure is self-assembled and self-aligned, a lesser number of processing steps are required to create the photonic device in comparison to the known approach that uses wet chemical etching techniques to form the ridge structure. The high precision of the ridge structure and the lesser number of processing steps needed to create the device increase manufacturing yield and allow overall cost of the device to be reduced.