Abstract:
Methods and apparatus for an imaging system are provided. The imaging system includes a gantry having a stationary member coupled to a rotating member. The rotating member has an opened area proximate an axis about which the rotating member rotates. An x-ray source provided on the rotating member. An x-ray detector may be disposed on the rotating member and configured to receive x-rays from the x-ray source. A rotary transformer having circumferentially disposed primary and secondary windings may form part of a contactless power transfer system that rotates the rotatable portion of the gantry at very high speeds, the primary winding being disposed on the stationary member and the secondary winding being disposed on the rotating member.
Abstract:
A CT detector capable of energy discrimination and direct conversion is disclosed. The detector includes multiple layers of semiconductor material with the layers having varying thicknesses. The detector is constructed to be segmented in the x-ray penetration direction so as to optimize count rate performance as well as avoid saturation. The detector also includes variable pixel pitch and a flexible binning of pixels to further enhance count rate performance.
Abstract:
A method of operating a user interface is provided. The method includes receiving a first control command at a console operationally coupled to a first and second medical system, wherein the console has control over both the first and second medical systems. The first medical system is operated based upon the first control command. The method further includes receiving a second control command at the console. The second medical system is operated based upon the second control command.
Abstract:
A CT detector capable of energy discrimination and direct conversion is disclosed. The detector includes multiple layers of semiconductor material with the layers having varying thicknesses. The detector is constructed to be segmented in the x-ray penetration direction so as to optimize count rate performance as well as avoid saturation. The detector also includes variable pixel pitch and a flexible binning of pixels to further enhance count rate performance.
Abstract:
A CT detector capable of energy discrimination and direct conversion is disclosed. The detector includes multiple layers of semiconductor material with the layers having varying thicknesses. The detector is constructed to be segmented in the x-ray penetration direction so as to optimize count rate performance as well as avoid saturation. The detector also includes variable pixel pitch and a flexible binning of pixels to further enhance count rate performance.
Abstract:
The present invention, in one form, is a method for modifying slice thickness during a helical scan without interrupting the scan. The method includes identifying adjacent and different regions within an object to be scanned. A transition region also is identified to include a portion of each of two adjacent regions and the interface therebetween. Slice thickness is modified during the scan so that redundant data is obtained in the transition region. Particularly, in one embodiment, a variable collimator is used to scan a first region with a first slice thickness. The variable collimator is rotated at the interface between the two adjacent regions, without interrupting table translation, to scan the second region with a second slice thickness. When changing the slice thickness, the collimator also is swept so that the x-ray beam with the second slice thickness re-scans a portion of the first region within the transition region. More particularly, the collimator is swept so that the transition region is scanned with both slice thicknesses.
Abstract:
A CT detector capable of energy discrimination and direct conversion is disclosed. The detector includes multiple layers of semiconductor material with the layers having varying thicknesses. The detector is constructed to be segmented in the x-ray penetration direction so as to optimize count rate performance as well as avoid saturation. The detector also includes variable pixel pitch and a flexible binning of pixels to further enhance count rate performance.
Abstract:
The present invention, in one form, is a system which, in one embodiment, adjusts the x-ray source current to reduce image noise to better accommodate different scanning parameters. Specifically, in one embodiment, the x-ray source current is adjusted as a function of image slice thickness, scan rotation time, collimation mode, table speed, scan mode, and filtration mode. Particularly, a function is stored in a CT system computer to determine an x-ray source current adjustment factor so that the appropriate x-ray source current is supplied to the x-ray source for the determined parameters. After adjusting the x-ray source current, an object is scanned.
Abstract:
Methods and apparatus for scanning an object in a computed tomography system during an interventional procedure are described. The computed tomography system includes an x-ray source, a detector, and a display. The detector detects x-rays projected from the x-ray source and attenuated by an object. A processor is coupled to the detector and coupled to the display for generating images of the object on the display. A helical scan is executed to generate an image slice of the object corresponding to each gantry rotation. At least one image slice and one three-dimensional image are simultaneously displayed on the display.
Abstract:
Methods and apparatus for an imaging system are provided. The imaging system includes a gantry having a stationary member coupled to a rotating member. The rotating member has an opened area proximate an axis about which the rotating member rotates. An x-ray source provided on the rotating member. An x-ray detector may be disposed on the rotating member and configured to receive x-rays from the x-ray source. A rotary transformer having circumferentially disposed primary and secondary windings may form part of a contactless power transfer system that rotates the rotatable portion of the gantry at very high speeds, the primary winding being disposed on the stationary member and the secondary winding being disposed on the rotating member.