摘要:
At least two microphones generate wideband electrical audio signals in response to incoming sound waves, and the wideband audio signals are filtered to generate low band signals and high band signals. From the low band signals, low band beamformed signals are generated, and the low band beamformed signals are combined with the high band signals to generate modified wideband audio signals. In one implementation, an electronic apparatus is provided that includes a microphone array, a crossover, a beamformer module, and a combiner module. The microphone array has at least two pressure microphones that generate wideband electrical audio signals in response to incoming sound waves. The crossover generates low band signals and high band signals from the wideband electrical audio signals. The beamformer module generates low band beamformed signals from the low band signals. The combiner module combines the high band signals and the low band beamformed signals to generate modified wideband audio signals.
摘要:
A portable communication device (200) including a portable communication device motion information obtaining device (230), for example, a GPS receiver, communicably coupled to a controller, an image projector (260) communicably coupled to the controller, the image projector projecting an image based on information from the portable communication device motion information obtaining device. In one embodiment image is projected onto a partially reflective film for viewing in a head-up (HUD) display application.
摘要:
An improved microphone assembly (128) is provided for porting two microphones (240, 242) of an opposing pair used for beam forming through a single symmetric porting structure (244). The microphone assembly (128) includes a first microphone capsule (240), a second microphone capsule (242) and a porting structure (244). The porting structure (244) encloses the first and second microphone capsules (240, 242) therein and has a first port (251) formed in a first wall (246) thereof and a second port (252) formed in a second wall (248) thereof opposite to the first wall (246), where the first and second microphone capsules (240, 242) share the first port (251).
摘要:
At least two microphones generate wideband electrical audio signals in response to incoming sound waves, and the wideband audio signals are filtered to generate low band signals and high band signals. From the low band signals, low band beamformed signals are generated, and the low band beamformed signals are combined with the high band signals to generate modified wideband audio signals. In one implementation, an electronic apparatus is provided that includes a microphone array, a crossover, a beamformer module, and a combiner module. The microphone array has at least two pressure microphones that generate wideband electrical audio signals in response to incoming sound waves. The crossover generates low band signals and high band signals from the wideband electrical audio signals. The beamformer module generates low band beamformed signals from the low band signals. The combiner module combines the high band signals and the low band beamformed signals to generate modified wideband audio signals.
摘要:
An electronic apparatus is provided that has a rear-side and a front-side, a first microphone that generates a first signal, and a second microphone that generates a second signal. An automated balance controller generates a balancing signal based on an imaging signal. A processor processes the first and second signals to generate at least one beamformed audio signal, where an audio level difference between a front-side gain and a rear-side gain of the beamformed audio signal is controlled during processing based on the balancing signal.
摘要:
A mobile station (100) that includes a processor (212) that selectively disables at least one station component to reduce electromagnetic noise generated by the station in the frequency range below 20 kHz when the mobile station is operated in the hearing aid compatible mode. The component can be, for example, a display (204), a light (206) or a wireless interface (208). The processor also can optimize characteristics of audio signals transmitted from the mobile station to the hearing aid for reproduction by the hearing aid. For instance, the processor can selectively adjust filter parameters (216) and/or a signal gain (218) applied to audio signals. A user interface (220) having a soft-key can be provided to cycle through various HAC options.
摘要:
An electronic apparatus is provided that has a rear-side and a front-side, a first microphone that generates a first signal, and a second microphone that generates a second signal. An automated balance controller generates a balancing signal based on an imaging signal. A processor processes the first and second signals to generate at least one beamformed audio signal, where an audio level difference between a front-side gain and a rear-side gain of the beamformed audio signal is controlled during processing based on the balancing signal.
摘要:
A communication device 100 includes a first audio output 105; a second audio output 110; an audio transducer 115 for dual mode use; a shuttered acoustic path 120 coupled between the audio transducer 115 and the first audio output 105; and an attenuated acoustic path 125 coupled between the audio transducer 115 and the second audio output 110.
摘要:
A method for audio signal enhancement comprising obtaining (222) a first audio signal from a first physical microphone element and obtaining a second audio signal from a second physical microphone element. The audio signals are array processed (226) to generate a virtual linear first order element and a virtual non-linear even order element. The array processing (226) includes combining the virtual linear first order element and the virtual non-linear even order element to generate a directional audio signal having a primary audio beam. An apparatus is disclosed for implementing the method.
摘要:
A user interface 103 for an electronic device 101 (and corresponding method) is arranged and constructed for intuitive control of interface functionality. The user interface includes: a user interface component, e.g. speaker, microphone, display backlighting, etc., that is one of a plurality of user interface components 105; interface circuitry 117 coupled to the user interface components 105; and a sensor 129 located in a position that is logically associated with, e.g. proximate to or co-located with, the user interface component and configured to provide an output signal when the sensor 129 is triggered, e.g. by proximity to a user, where the output signal facilitates, via for example a controller 143, a change in an operating mode of one or more of the user interface components 105.