Abstract:
A method and apparatus for magnetically beneficiating a raw sample, such as coal or lunar soil is disclosed. The beneficiation is achieved using a novel of fractionating the sample into components of different magnetic susceptibilities. The results of the fractionation may be used to determine the type of magnet to be employed for large scale operations, as well as the appropriate fraction or fractions to be recovered for further processing.
Abstract:
An apparatus for magnetically separating and collecting particulate matter fractions of a raw sample according to relative magnetic susceptibilities of each fraction so collected is disclosed. The separation apparatus includes a splitter which is used in conjunction with a magnetic separator for achieving the desired fractionation.
Abstract:
A process is taught for preparing a coal substitute of low ash level from a composite of coal, mineral matter and pyritic sulfur comprising comminuting the coal composite in an aqueous medium to a size range which promotes the liberation of the mineral matter; subjecting the resulting slurry to fines agglomeration in the presence of a water-insoluble bridging organic liquid; separating the agglomerates from the liquid phase containing the bulk of the mineral matter and a portion of the pyritic sulfur; treating the coal fines by stripping the organic liquid from the fines surface; and redispersing the fines in an aqueous medium having a surface active agent to yield a high solids coal fines slurry so to permit magnetic separation of residual pyritic sulfur and other magnetic mineral matter.
Abstract:
An improved method for separating minute, weakly magnetically susceptible particles from an aqueous clay-water slurry containing said particles in minor concentration with substantially non-magnetic minute mineral particles. In accordance with the improvement, the effects of subjecting said particles to separation in a magnetic field, are augmented by subjecting the slurry to a preliminary treatment which mechanically works the dispersed phase of the slurry as to effect release of the contaminant particles. Such working may, for example, be provided by subjecting the slurry, preferably at high solids content, to mechanical shear, to high velocity impact, or to kneading.
Abstract:
Apparatus for augmenting or facilitating flushing of impurities collected by a porous ferromagnetic matrix. The matrix is contained in a canister, through which an aqueous clay slurry is flowed as an applied field magnetizes the matrix to enable attraction of the discoloring magnetics. The periodic flushing of the matrix is rendered of increased efficacy, by applying auxiliary mechanical forces to dislodge the magnetics; or other disclosed means and methods may be used to facilitate the flushing operation.
Abstract:
A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.
Abstract:
An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor or a pulverizer for reducing the size of the particles. The apparatus includes a mechanism for separating undesired material from desired material.
Abstract:
An apparatus for sorting particles. The apparatus includes a magnet mechanism for separating the particles with a magnetic force. The apparatus includes an electric mechanism for separating particles with an electrical force disposed adjacent to the magnet mechanism. The apparatus includes a mechanism for providing the particles to the magnet mechanism and the electric mechanism. The providing mechanism is engaged with the magnet mechanism and the electric mechanism. A method for sorting particles. The method includes the steps of providing the particles to a magnet mechanism and electric mechanism disposed adjacent to the magnet mechanism. Then there is the step of separating the particles with the magnetic force from the magnet mechanism and the electric force from the electric mechanism.
Abstract:
A method and apparatus for breaking emulsions using magnetic fields to promote magnetostatic coalescence. The method includes use of a magnetic additive soluble or dispersable in the dispersed phase of the emulsion and a second additive for promoting coalescence of the dispersed phase droplets when acted on by a magnetic field. The apparatus includes a continuously operating high gradient magnetic coalescer having a plurality of magnetic elements therein oriented vertically which are magnetized transverse to their lengths for treating emulsions containing large amounts of internal phase. The magnetized elements serve to attract droplets of the internal phase to their surfaces, where they coalesce under magnetic compression force, and to provide a pathway for drainage of the coalesced droplets from the separator. Additionally the apparatus includes a magnetic field assisted settler for treating emulsions with intermediate water content. The apparatus further includes magnetic filters for removing the final amounts of the internal phase and for recovering the magnetic additives for reuse in the process.
Abstract:
Apparatus for effecting magnetic separation of magnetically attractable particles dispersed in a fluid carrier, as for example weakly magnetic discoloring contaminants dispersed in a clay slurry. The dispersion is passed through a ferromagnetic filamentatious matrix within a canister disposed in a magnetic field. The matrix is part of a magnetic separator system characterized by a separation parameter p, where p is a function of the geometry and magnetic and electrical properties of the separating apparatus; and of the rheological and magnetic properties of the dispersion. By determinately setting the controllable parameters associated with the aforementioned properties which effect p, a desired attenuation in the population of contaminant species is achieved. Optimized apparatus configurations are also disclosed, which configurations are based upon the discovered realtionships.