Abstract:
A mechanism for operating a plurality of circuit interruption mechanisms of a circuit breaker, the mechanism applies a uniform force to the circuit interruption mechanisms. The mechanism applies a force to an elongated member for manipulating the circuit interruption mechanisms. The mechanism applies a force to the elongated member at a first position and a second position, the first position and the second position being intermediate to a center of the elongated member and the plurality of circuit interruption mechanisms.
Abstract:
A circuit breaker assembly includes first and second rotary contact assemblies mountable to a base member, a circuit breaker operating mechanism mounted to the first rotary contact assembly, and a trip bar in mechanical communication with the first rotary contact assembly and the circuit breaker operating mechanism. The rotary contact assemblies each include rotors rotatable about axes therethrough and movable contact arms pivotally mounted within the rotors. The circuit breaker operating mechanism serves to position the rotors to separate movable contacts thereon from fixed contacts. A trip override device includes spring links operably connected via springs to each of the rotors of the rotary contact assemblies and the trip bar. The trip bar comprises trip levers protruding radially therefrom and being in mechanical communication with the rotary contact assemblies.
Abstract:
A circuit breaker having at least one cassette for receiving a conductive path. The conductive path is partially looped upon itself so that a first portion and a second portion of the conductive path are in a facially spaced relationship and the portions partially define an area for receiving a ferromagnetic material. The ferromagnetic material is insulated from the first portion and a support structure provides support for the first portion at two positions and the area is positioned in between these positions.
Abstract:
A precision location system for a circuit breaker utilizing a phase cassette concept is disclosed. A cover plate is mounted to at least one of a plurality of single-pole units having a circuit breaker operating mechanism positioned thereon. The cover plate is configured to precisely align an actuator precisely located on the cover with the circuit breaker operating mechanism. The actuator trips a latch of the operating mechanism, thereby tripping the entire circuit.
Abstract:
A system that implements a design process having a plurality of sub-processes each having a plurality of sub-steps. The system includes an independent application for implementing the design process. A series of independent sub-process applications each implements one sub-process of the design process. A communications path provides for communications between the design process and each of the sub-process applications. The communications path also provides for communications between each of said plurality of sub-processes. An application library containing a plurality of executable applications is accessible by the design process and sub-processes to access and execute the plurality of application tools.
Abstract:
A thermal-magnetic trip unit, suitable for use in a circuit breaker, for eliminating the requirement for latching surfaces while still providing the additional force and motion required to trip the breaker during a short circuit or an overcurrent trip event. The trip unit comprises a link that is biased based on the position of a trip bar. A spring biases the link in a first direction when the trip unit is in a reset condition and biases the link in a second direction when the trip bar is rotated about a pivot point. A trip unit further including an improved indication-of-trip system comprising a two-piece trip bar mechanism and flag system is described to discriminate between overcurrent and short circuit faults. In this embodiment of the invention, visual confirmation of the cause of the trip is provided. The case of the circuit breaker in this embodiment of the invention includes a window disposed therein in a location conducive to a user viewing an identification flag thus enabling the rapid determination of the type of trip which has occurred. To identify a trip caused by an overcurrent condition, a first flag is employed. To identify a trip caused by a short circuit condition, a second flag is employed.
Abstract:
A rotary double-break circuit breaker includes a case defining a circuit breaker enclosure with a rotatable bridge and contact arm arrangement. The contact arm having movable contacts which is rotatable between a closed position and an open position. A pair of stationary contacts cooperate with the movable contacts, and a conductor is operatively connected to each of the stationary contacts for current input thereto. Each of the movable contacts includes a heel portion and a toe portion, the heel portion contacting one of the stationary contacts and the toe portion spaced from the stationary contact when the contact bridge is in closed position, the movable contact being angled or curved relative to the stationary contact such that upon the contact bridge rotating to disengage the movable contacts from the stationary contacts, an electric arc formed between the movable contact and the stationary contact runs to the toe portion of the movable contact thereby protecting the heel portion from substantial damage.
Abstract:
A field-installable circuit breaker trip unit conversion kit in the form of a flux shifter unit that interfaces with the circuit breaker operating mechanism is installable without dismantling the circuit breaker components. The flux shifter unit responds to an electronic trip unit to articulate the circuit breaker operating mechanism and separate the circuit breaker contacts upon occurrence of an overcurrent condition. Expansion springs achieve tolerance take-up for different operating mechanism assemblies to correctly interface with the associated electronic trip unit.