Abstract:
An optical sensor arrangement includes a transmitter that emits light rays and a receiver that receives light rays reflected from an object. A deflection unit deflects the transmitted light rays to periodically sweep across a monitoring range. An evaluation unit stores parameters of several safety zones that form respectively predetermined areas of the monitoring range. An object detection signal is generated in the evaluation unit in dependence on receiving signals at the receiver output, which object detection signal indicates whether or not an object is located within an activated safety zone. A communication interface is coupled to the evaluation unit and is operative for bi-directional data transmission with an external unit. At least one of the stored safety zones is activated by reading into the evaluation unit activation signals from the external unit via the communication interface.
Abstract:
Objects within an area of coverage are located at predetermined points in time with an optical sensor. Based on detected locations of the objects, a driving direction and/or a speed of the vehicle is determined as a function of measuring variables measured with the optical sensor. Based on the determined direction and/or speed, (a) a protective zone is selected among a plurality of protective zones previously stored in the optical sensor, or (b) a validity of a preset protective zone or a preset vehicle parameter value stored in the optical sensor is checked.
Abstract:
A circuit arrangement for generating light pulses includes an electro-optical converter; a switching element; and a charge store. The electro-optical converter is connected to the charge store via the switching element. The closing of the switching element triggers a discharging process in the charge store and, in the process, generates an electrical pulse that is converted to a light pulse in the electro-optical converter. First and second impedance matching circuits are arranged, respectively, between the charge store and the switching element and between the switching element and the electro-optical converter.
Abstract:
An optoelectronic device for detecting objects in a monitoring range with a distance sensor includes a transmitter for transmitting light rays and a deflection unit on which the transmitted light rays are reflected for periodically sweeping the transmitted rays over the monitoring range. A receiver for the light rays is coupled to an evaluation unit. The evaluation unit includes means for storing dimensions of different monitoring ranges and several inputs each of which is operatively associated with a respective one of the stored dimensions of the different monitoring ranges. The evaluation unit further includes a test output for emitting a test signal having a predetermined signal value. A separate feed line is connected to each of the several inputs and a separate switch is connected via a respective one of the feed lines to a respective one of the inputs of the evaluation unit. Upon activation of one of the switches a predetermined signal value is transmitted to the respective input for activating the input thereby activating the respective stored monitoring range so that objects in the activated monitoring range are detected. The test output of the evaluation unit is coupled to each of the feed line. For test purposes, the test signal is transmitted via the test output to each of the feed line. An error-free operation is signified if the predetermined signal value of the test signal is present at the respective inputs of the evaluation unit.
Abstract:
Objects within an area of coverage are located at predetermined points in time with an optical sensor. Based on detected locations of the objects, a driving direction and/or a speed of the vehicle is determined as a function of measuring variables measured with the optical sensor. Based on the determined direction and/or speed, (a) a protective zone is selected among a plurality of protective zones previously stored in the optical sensor, or (b) a validity of a preset protective zone or a preset vehicle parameter value stored in the optical sensor is checked.
Abstract:
A circuit arrangement for generating light pulses includes an electro-optical converter; a switching element; and a charge store. The electro-optical converter is connected to the charge store via the switching element. The closing of the switching element triggers a discharging process in the charge store and, in the process, generates an electrical pulse that is converted to a light pulse in the electro-optical converter. First and second impedance matching circuits are arranged, respectively, between the charge store and the switching element and between the switching element and the electro-optical converter.
Abstract:
An optical sensor for detecting objects in an area to be monitored includes a transmitter for emitting light pulses, a receiver for receiving light pulses, and an evaluation unit for determining the distance to an object by means of a transit time for a light pulse to the object. The light pulse is reflected back to the receiver in the form of a receiving light pulse, and the transit time measurement is based on a location in time of a maximum point of the receiving light pulse computed by the evaluation unit.
Abstract:
Seating in the form of a chair or similar piece of furniture. The legs are connected by a frame. The frame is a torsionally rigid box with a top and bottom connected and prevented from shifting in relation to each other by lateral stretchers. In addition to connecting the legs, the frame constitutes a support for a seat. The lateral stretchers of the frame in one practical embodiment are arcs of a circle with their ends merging into corners. The legs are rigidly secured to the frame in the vicinity of the corners.