Abstract:
A flow device includes a flow-through region comprising at least one stage having a pocket configured to create a first pressure drop across the flow-through region in response to flow through the flow-through region in a first direction and a second pressure drop in response to flow through the flow-through region in a second direction. The first pressure drop is less than the second pressure drop under the same flow rates. The flow device has no moving parts to create the difference in pressure drop between the first direction and the second direction, the pocket has a larger cross sectional flow area than a first opening and a second opening fluidically connected to the pocket and a baffle positioned within the pocket having a “U” shape with a concave side of the baffle facing toward the second opening.
Abstract:
A flow device, includes a flow-through region comprising at least one stage and configured to create a first pressure drop across the flow-through region in response to flow through the flow-through region in a first direction and a second pressure drop in response to flow through the flow-through region in a second direction. The first pressure drop being less than the second pressure drop under the same flow rates. The flow device having no moving parts to create the difference in pressure drop between the first direction and the second direction. A method of creating different pressure drops based on a direction of flow.
Abstract:
A method of making a flow control device for controlling flow of fluid between a formation and a wellbore is provided, which method in one aspect may include: providing a member suitable for placement in a wellbore for receiving formation fluid; selecting a geometry for a flow-through region configured to substantially increase value of a selected parameter relating to the flow-through region when a selected property of the formation fluid is in a first range changes and maintain a substantially constant pressure drop across the flow-through region when the selected property of the fluid is in a second range; and forming the flow-through region on the member to provide the flow control device.
Abstract:
A method of making a flow control device for controlling flow of fluid between a formation and a wellbore is provided, which method in one aspect may include: providing a member suitable for placement in a wellbore for receiving formation fluid; selecting a geometry for a flow-through region configured to substantially increase value of a selected parameter relating to the flow-through region when a selected property of the formation fluid is in a first range changes and maintain a substantially constant pressure drop across the flow-through region when the selected property of the fluid is in a second range; and forming the flow-through region on the member to provide the flow control device.
Abstract:
A method of providing a flow control device is disclosed, which one aspect may include: defining a flow rate; defining a desired relationship between a parameter of the flow control device that exhibits a substantial change when a selected property of the fluid changes in a first range and remains substantially constant when the selected property is in the second range; determining using a computer and a simulation program the relationship between the performance parameter and the selected property over the first range and the second range for the defined flow rate for a geometry of a flow through area of a flow control device; comparing the determined relationship of the performance parameter with the desired relationship; altering the geometry to a new geometry when the difference between the desired performance and the determined performance is outside a desired range; determining using the computer and the simulation program the relationship between the performance parameter and the selected property over the first range and the second range for the defined flow rate for the new geometry of the flow through area of the flow control device; repeating the process of altering the geometry and determining the performance until the difference between the desired performance and the determined performance for a geometry is acceptable; and storing the geometry of the flow through device on a suitable storage medium for which the difference between the determined performance and the desired performance is acceptable.
Abstract:
Methods and devices for negating scale buildups on interior surfaces of a sliding sleeve valve housing above the flow tube. In some aspects, a wiper member provides additional clearance between the flow tube and housing to compensate for scale buildup. In other aspects, the interior surface of the valve housing is provided with a sleeve that is disposed between the interior surface of the valve housing and the general flowbore passing through the valve housing to protect the interior surface against scale buildup.
Abstract:
Methods and devices for negating scale buildups on interior surfaces of a sliding sleeve valve housing above the flow tube. In some aspects, a wiper member provides additional clearance between the flow tube and housing to compensate for scale buildup. In other aspects, the interior surface of the valve housing is provided with a sleeve that is disposed between the interior surface of the valve housing and the general flowbore passing through the valve housing to protect the interior surface against scale buildup.
Abstract:
A variable downhole choke is disclosed wherein an outer housing includes a selected port pattern of ports and subports and a sleeve having similar ports and subports wherein subports depend from ports on each of the housing and sleeve. The ports/subports are oriented so that upon converging movement of housing and sleeve the sleeve subports align with housing subports before the sleeve ports align with housing ports.
Abstract:
The disclosure provides an apparatus for use in a wellbore that includes a first device that provides a first pressure differential based on a first constituent of a fluid and a second pressure differential based on a second constituent of the fluid and a second device that utilizes the first and second pressure differentials to operate a third device that performs an operation in the wellbore.
Abstract:
A method of providing a flow control device is disclosed, which one aspect may include: defining a flow rate; defining a desired relationship between a parameter of the flow control device that exhibits a substantial change when a selected property of the fluid changes in a first range and remains substantially constant when the selected property is in the second range; determining using a computer and a simulation program the relationship between the performance parameter and the selected property over the first range and the second range for the defined flow rate for a geometry of a flow through area of a flow control device; comparing the determined relationship of the performance parameter with the desired relationship; altering the geometry to a new geometry when the difference between the desired performance and the determined performance is outside a desired range; determining using the computer and the simulation program the relationship between the performance parameter and the selected property over the first range and the second range for the defined flow rate for the new geometry of the flow through area of the flow control device; repeating the process of altering the geometry and determining the performance until the difference between the desired performance and the determined performance for a geometry is acceptable; and storing the geometry of the flow through device on a suitable storage medium for which the difference between the determined performance and the desired performance is acceptable.