Abstract:
A transparent capacitive touch panel comprising a transparent substrate, a transparent cover lens and a transparent adhesive layer is provided, wherein a first transparent electrode layer and a second transparent electrode layer are disposed on the transparent cover lens and the transparent substrate respectively. The transparent adhesive layer is used to bind the first transparent electrode layer and second transparent electrode layer in order to combine the transparent cover lens and the transparent substrate disposed in parallel. Thereby, the manufacturing process of the transparent capacitive touch panel is simplified, and the manufacturing cost of the same is lowered.
Abstract:
A field sequential driving method includes the following steps. First, a liquid crystal display (LCD) including a display unit and a backlight unit is provided. The display unit includes several pixel units. Next, a white light source of the backlight unit is enabled during a first sub-frame period of a frame period of the LCD. Then, red and blue sub-pixel data are provided to drive a first sub-pixel and a second sub-pixel in the pixel unit during the first sub-frame period. Next, a green light source of the backlight unit is enabled during a second sub-frame period of the frame period. Thereafter, green sub-pixel data is provided to drive a third sub-pixel of the pixel unit during the second sub-frame period.
Abstract:
A dual display device has pixels and each pixel includes a transparent substrate, an active driving circuit, a top organic LED, a bottom organic LED, an insulation layer that covers the active driving circuit and the bottom organic LED, and a contact hole. A connection element covers the insulation layer, the top organic LED is deposited on the connection element, and the anodes of the two LEDs electrically connect to the active driving circuit through the contact hole by the connection element. Hence, each pixel forms a structure that two organic LEDs stack together on the transparent substrate and the top and bottom organic LEDs can be driven respectively so as to achieve the dual display device.
Abstract:
An image processing apparatus and an image processing method. The image processing apparatus includes a first convolution unit, a weight generator, a second convolution unit, an arithmetic unit and an outputting unit. The first convolution unit performs a convolution to output edge strength according to an original image signal and a high pass filter mask. The weight generator chooses a weight coefficient according to the edge strength. The second convolution unit performs a convolution to output an unsharp image signal according to the original image signal and a low pass filter mask. The arithmetic unit outputs a first sharpening signal according to the original image signal, the unsharp image signal and the weight coefficient. The outputting unit outputs a processed image signal according to the original image signal and the first sharpening signal.
Abstract:
An image data conversion method is provided. The method comprises the following steps of (a) receiving an original image data having three basic-color sub-pixel data and (b) calculating at least one color-enhancing sub-pixel data according to any two basic-color sub-pixel data so as to convert the original image data into an image data having at least three basic-color sub-pixel data and one color-enhancing sub-pixel data. The calculation of the color-enhancing sub-pixel data is represented as: J i = [ var . - ( D i - E i S ) ] × Max ( D i , E i ) wherein 0.8
Abstract:
A transparent capacitive touch panel comprising a transparent substrate, a transparent cover lens and a transparent adhesive layer is provided, wherein a first transparent electrode layer and a second transparent electrode layer are disposed on the transparent cover lens and the transparent substrate respectively. The transparent adhesive layer is used to bind the first transparent electrode layer and second transparent electrode layer in order to combine the transparent cover lens and the transparent substrate disposed in parallel. Thereby, the manufacturing process of the transparent capacitive touch panel is simplified, and the manufacturing cost of the same is lowered.
Abstract:
A field sequential driving method includes the following steps. First, a liquid crystal display (LCD) including a display unit and a backlight unit is provided. The display unit includes several pixel units. Next, a white light source of the backlight unit is enabled during a first sub-frame period of a frame period of the LCD. Then, red and blue sub-pixel data are provided to drive a first sub-pixel and a second sub-pixel in the pixel unit during the first sub-frame period. Next, a green light source of the backlight unit is enabled during a second sub-frame period of the frame period. Thereafter, green sub-pixel data is provided to drive a third sub-pixel of the pixel unit during the second sub-frame period.
Abstract:
The invention provides an image processing method and apparatus thereof. The white component data is extracted from the input R, G, B color data which are the base components of the input image data. A maximum value is extracted from the R, G, B color data and a parameter is generated based on the white component data and the maximum value. The R, G, B color data are multiplied by the parameter to obtain a multiplication result. Subtract the white component data from the R, G, B color data to obtain a subtraction result. The multiplication result and the subtraction result are added together to generate the output R, G, B color data. The output R, G, B color data and the white component data form an output image data with higher brightness.
Abstract:
A high-stability shift circuit using amorphous silicon thin film transistors, which utilizes two out-of-phase pulses to control the operating mechanism and the bias-relations among transistors in the shift circuit. This makes the transistors under the driving conditions of positive/negative-alternating biases so as to restrain the voltage shift of the transistors such that the threshold voltage will not excessively increase along with the increasing operating time. This can not only increase the lifetime of the amorphous silicon thin film transistors but also extend the operating time of the shift circuit.
Abstract:
An image-processing device and method for enhancing the luminance and the image quality of display panels, the device and method includes a color distribution calculating unit which classifies the original image-color data, and then calculates the ratio of the color data in block B2 to all input image-color data. A control-variable generating unit determines the value of the converting-control variable and the value of the backlight luminance-control variable according to the ratio. The converting-control variable will be output to a numerical converting unit so as to convert the original image-color (RGB) data to the new image-color (R′G′B′W′) data. The backlight luminance-control variable will be output to a backlight luminance-control unit so as to control the backlight luminance.