Abstract:
A method for producing well-crystallized adherent diamond layers on WC—Co substrates. An array of focused laser beams is scanned across the WC—Co sample. Useful lasers include the excimer, YAG:Nd, and carbon dioxide types. The process is conducted in open air with carbon dioxide and nitrogen gases delivered for shrouding the substrate. A luminous plasma is found a few mm above the WC—Co insert. The duration of the deposition process in a typical case is approximately 40 s. This typically gives 20-40 &mgr;m thick coatings. The vertical growth rate is about 1 &mgr;m/s.
Abstract:
A diamond coating formed on a WC—Co substrate prepared through a process including employing a plasma and a variety of interactions from a multiple laser system demonstrates exceptional adhesion and indicates a durable cubic diamond structure. The coating on the WC—Co substrate is typically between 25 and 40 &mgr;m thick and has an average crystal size of between 10 and 20 &mgr;m. Various methods of confirming the cubic diamond structure of the coatings have been employed. The adhesion of the diamond coating to the substrate is very strong. An electron microprobe analysis shows tungsten and cobalt atoms incorporated into the film and a layer depleted in cobalt exists at the diamond-WC—Co interface. Particulates of WC—Co—C alloy are spread over the top surface, apparently formed by condensation from the vapor phase of metal-containing molecules. Carbon is confirmed as being the main component of the surface layer.
Abstract:
The preparation and use of diamond as an electron emission material is disclosed. Satisfactory measurements were conducted on diamond coatings deposited on WC-Co alloy by a multiple pulsed laser process. The electron emission was measured in a diode configuration with a diamond surface-anode spacing of 20 and 50 &mgr;m in vacuum at P=10−7 Torr. Current densities of 6 mA/cm were calculated at an applied of voltage of 3000 V (for 20 &mgr;m). Analysis proved that electron field emission provided by a diamond grown by a multiple pulsed laser process proved to satisfactorily meet the specified demands.