Abstract:
A system and method are presented for improved performance of gerotor compressors and expanders. Certain aspects of the disclosure reduce porting losses in a gerotor system. Other aspects of the disclosure provide for reduced deflection in lobes of an outer rotor of a gerotor system. Still other aspects of the disclosure provide for reduced leakage through tight gaps between components of a gerotor system.
Abstract:
Electrical machines such as electromagnetic devices rely on the magnetic flux to create the forces required to move the component that transfers the work output of the device. Embodiment of the disclosure achieve this through a unique stator pole to rotor/actuator pole configuration that maximizes the magnetic flux flow across the air gap(s). This is achieved by tilting the air gap in more than one plane with respect to the rotation plane of the rotor.
Abstract:
According to one embodiment, an open brayton bottoming cycle includes a heat exchanger configured between a compressor and an expander. The heat exchanger is configured to receive heat from a heat source and supply at least a portion of the exhaust heat to an expander using a fluid. The compressor configured to supply compressed fluid to the heat exchanger. The expander has a shaft connected to the compressor and configured to supply energy to the compressor. At least one of the compressor or the expander has an efficiency greater than 80 percent.
Abstract:
According to one embodiment, an open brayton bottoming cycle includes a heat exchanger configured between a compressor and an expander. The heat exchanger is configured to receive heat from a heat source and supply at least a portion of the exhaust heat to an expander using a fluid. The compressor configured to supply compressed fluid to the heat exchanger. The expander has a shaft connected to the compressor and configured to supply energy to the compressor. At least one of the compressor or the expander has an efficiency greater than 80 percent.
Abstract:
According to one embodiment of the invention, an engine system comprises a housing, an outer gerotor, an inner gerotor, a tip inlet port, a face inlet port, and a tip outlet port. The housing has a first sidewall, a second sidewall, a first endwall, and a second endwall. The outer gerotor is at least partially disposed in the housing and at least partially defines an outer gerotor chamber. The inner gerotor is at least partially disposed within the outer gerotor chamber. The tip inlet port is formed in the first sidewall and allows fluid to enter the outer gerotor chamber. The face inlet port is formed in the first endwall and allows fluid to enter the outer gerotor chamber. The tip outlet port is formed in the second sidewall and allows fluid to exit the outer gerotor chamber.
Abstract:
According to one embodiment of the invention, a gerotor apparatus includes a first gerotor, a second gerotor, and a synchronizing system operable to synchronize a rotation of the first gerotor with a rotation of the second gerotor. The synchronizing system includes a cam plate coupled to the first gerotor, wherein the cam plate includes a plurality of cams, and an alignment plate coupled to the second gerotor. The alignment plate includes at least one alignment member, wherein the plurality of cams and the at least one alignment member interact to synchronize a rotation of the first gerotor with a rotation of the second gerotor.
Abstract:
A system and method are presented for improved performance of gerotor compressors and expanders. Certain aspects of the disclosure reduce porting losses in a gerotor system. Other aspects of the disclosure provide for reduced deflection in lobes of an outer rotor of a gerotor system. Still other aspects of the disclosure provide for reduced leakage through tight gaps between components of a gerotor system.
Abstract:
A system and method for liquefying gas are provided. The method includes combining an input gas and a first recycle stream to form a first blended stream, and producing a cooled first blended stream and a heated second blended stream by passing the first blended stream and a second blended stream through a heat exchanger. The method also includes producing a mixture of gas and liquefied gas from the cooled first blended stream using a first expander, and producing the liquefied gas at an outlet. The method further includes producing a second recycle stream from the gas from the output of the first expander using a first compressor, and combining the second recycle stream and a third recycle stream to form the second blended stream. The method still further includes producing the first recycle stream from the heated second blended stream using a second compressor, and producing the third recycle stream from the first recycle stream using a second expander.
Abstract:
According to an embodiment of the disclosure, a desalination system includes a latent heat exchanger, a hydroclone, a compressor, and a quiescent vertical column. The latent heat exchanger is configured to receive saltwater. The latent heat exchanger includes tubes with an interior that are configured to circulate supersaturated brine with suspended salts. The hydroclone is configured to receive a flow from the latent heat exchanger. And, the hydrocodone has a flow that is substantially steam exiting the top and a flow that is substantially liquid exiting the bottom. The compressor that receives at least a portion of the flow that is substantially steam exiting the top of the hydroclone. An output of the compressor recirculating at least a portion of the flow back to the latent heat exchanger.
Abstract:
A system and method are presented for improved performance of gerotor compressors and expanders. Certain aspects of the disclosure reduce porting losses in a gerotor system. Other aspects of the disclosure provide for reduced deflection in lobes of an outer rotor of a gerotor system. Still other aspects of the disclosure provide for reduced leakage through tight gaps between components of a gerotor system.