Abstract:
This disclosure describes a structured polynucleotide, devices that include the structured polynucleotide, and methods involving the structured polynucleotide and/or devices. Generally, the structured polynucleotide includes five domains. A first domain acts as a toehold for an input DNA logic gate to initiate binding to an SCS biomolecule. A second domain acts as a substrate recognition sequence for an upstream DNA logic gate. A third domain acts as a toehold for a output DNA logic gate to initiate binding of the SCS biomolecule to the gate. A fourth domain acts as an effector sequence to alter the state of the output logic gate. A fifth domain acts as a cage sequence to lock the effector sequence in an inactive state until an input gate binds to the structured polynucleotide.
Abstract:
An affordable flow cytometry system with a significantly increased analytical rate, volumetric sample delivery and usable particle size including a light beam that interrogates multiple flow streams so as to provide excitation across all of the streams, and an optical objective configured to collect light from the sample streams and image the light onto an array detector.
Abstract:
One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel.At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.
Abstract:
This disclosure describes a structured polynucleotide, devices that include the structured polynucleotide, and methods involving the structured polynucleotide and/or devices. Generally, the structured polynucleotide includes five domains. A first domain acts as a toehold for an input DNA logic gate to initiate binding to an SCS biomolecule. A second domain acts as a substrate recognition sequence for an upstream DNA logic gate. A third domain acts as a toehold for a output DNA logic gate to initiate binding of the SCS biomolecule to the gate. A fourth domain acts as an effector sequence to alter the state of the output logic gate. A fifth domain acts as a cage sequence to lock the effector sequence in an inactive state until an input gate binds to the structured polynucleotide.
Abstract:
Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.
Abstract:
An affordable flow cytometry system with a significantly increased analytical rate, volumetric sample delivery and usable particle size including a light beam that interrogates multiple flow streams so as to provide excitation across all of the streams, and an optical objective configured to collect light from the sample streams and image the light onto an array detector.
Abstract:
An analytical device such as a flow cytometer is provided in which a fluid sample flowing through a channel is focused into multiple, parallel particle streams by an acoustic wave field extending across the channel. Each stream is then presented to an individual detector to allow for simultaneous interrogation of the multiple streams and thus, high-throughput analysis of the fluid sample.
Abstract:
One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel.At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.
Abstract:
Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.
Abstract:
Method and system for uniformly spacing particles in a flowing system comprising suspending particles in an elongated fluid filled cavity; exposing said cavity to an axial acoustic standing wave field, wherein said axial acoustic standing wave field drives said particles to nodal and anti-nodal positions along the center axis of said cavity to result in uniformly spaced particles; and focusing said particles to the center axis of said cavity.