Face image prioritization based on face quality analysis
    1.
    发明授权
    Face image prioritization based on face quality analysis 有权
    基于脸部质量分析的面部图像优先级

    公开(公告)号:US08861802B2

    公开(公告)日:2014-10-14

    申请号:US13419142

    申请日:2012-03-13

    IPC分类号: G06K9/00

    CPC分类号: G06K9/036 G06K9/00221

    摘要: Methods, machine-readable media, and devices for face image prioritization based on face quality analysis are described herein. For example, one or more embodiments include detecting a facial image in an image that has been acquired by a camera that monitors a scene, passing the facial image through a number of quality analysis filters that include a number of quality analysis factors, wherein processing complexity associated with the number of quality analysis factors increases consecutively, and submitting the facial image to a facial recognition program upon a determination that the facial image has passed the number of quality analysis filters.

    摘要翻译: 本文描述了基于面部质量分析的方法,机器可读介质和用于面部图像优先化的设备。 例如,一个或多个实施例包括检测已经由监视场景的照相机获取的图像中的面部图像,使面部图像通过包括多个质量分析因子的多个质量分析过滤器,其中处理复杂度 与质量分析因子的数量连续增加相关联,并且在确定面部图像已经通过质量分析过滤器的数量时,将面部图像提交给面部识别程序。

    System and method for ocular recognition
    3.
    发明授权
    System and method for ocular recognition 有权
    眼睛识别系统和方法

    公开(公告)号:US08385685B2

    公开(公告)日:2013-02-26

    申请号:US13155548

    申请日:2011-06-08

    IPC分类号: G06K9/00 G06K9/36

    CPC分类号: G06K9/00604 G06K9/4623

    摘要: A system and method include decomposing via a computer an ocular region into several filtered images of different orientation and scale, using the computer to combine the decomposed images for each scale, using a computer executed classifier for each scale, matching across different quality images, and using a computer, constructing a matching score by combining the scale scores using adaptively weighted sum for each scale.

    摘要翻译: 系统和方法包括通过计算机将眼部区域分解为不同取向和尺度的几个滤波图像,使用计算机对每个比例组合分解的图像,使用用于每个比例的计算机执行的分类器,跨不同质量图像匹配,以及 使用计算机,通过使用每个比例的自适应加权和来组合比例分数来构建匹配分数。

    SYSTEM AND METHOD FOR OCULAR RECOGNITION
    4.
    发明申请
    SYSTEM AND METHOD FOR OCULAR RECOGNITION 有权
    用于视觉识别的系统和方法

    公开(公告)号:US20120314913A1

    公开(公告)日:2012-12-13

    申请号:US13155548

    申请日:2011-06-08

    IPC分类号: G06K9/68

    CPC分类号: G06K9/00604 G06K9/4623

    摘要: A system and method include decomposing via a computer an ocular region into several filtered images of different orientation and scale, using the computer to combine the decomposed images for each scale, using a computer executed classifier for each scale, matching across different quality images, and using a computer, constructing a matching score by combining the scale scores using adaptively weighted sum for each scale.

    摘要翻译: 系统和方法包括通过计算机将眼部区域分解为不同取向和尺度的几个滤波图像,使用计算机对每个比例组合分解的图像,使用用于每个比例的计算机执行的分类器,跨不同质量图像匹配,以及 使用计算机,通过使用每个比例的自适应加权和来组合比例分数来构建匹配分数。

    LANDMARK LOCALIZATION FOR FACIAL IMAGERY
    5.
    发明申请
    LANDMARK LOCALIZATION FOR FACIAL IMAGERY 审中-公开
    地面图像的LANDMARK本地化

    公开(公告)号:US20120148160A1

    公开(公告)日:2012-06-14

    申请号:US12832613

    申请日:2010-07-08

    IPC分类号: G06K9/46

    CPC分类号: G06K9/00281

    摘要: A process and system for facial landmark detection of a face in a scene of an image includes determining face dimensions from the image, identifying regions of search for one or more facial landmarks using the face dimensions, and running a cascaded classifier and a strong classifier tailored to detect different types of facial landmarks to determine one or more respective locations of the facial landmarks. According to another example embodiment, the facial landmarks are used for face mining or face recognition, and the cascaded classifier is performed using a multi-staged AdaBoost classifier, where detections from multiple stages are utilized to enable the best location of the landmark. According to another example embodiment, the strong classifier is a support vector machine (SVM) classifier with input features processed by a principal component analysis (PCA) of the landmark subimage.

    摘要翻译: 用于面部地图检测图像场景中的面部的过程和系统包括从图像确定面部尺寸,使用面部尺寸识别搜索一个或多个面部地标的区域,以及运行级联分类器和强分类器 以检测不同类型的面部地标以确定面部地标的一个或多个相应的位置。 根据另一示例性实施例,面部地标用于面部挖掘或面部识别,并且使用多级AdaBoost分类器来执行级联分类器,其中利用来自多个级的检测来实现地标的最佳位置。 根据另一示例实施例,强分类器是具有由地标子图像的主成分分析(PCA)处理的输入特征的支持向量机(SVM)分类器。

    System and method for autonomous object tracking
    6.
    发明授权
    System and method for autonomous object tracking 有权
    自动跟踪对象的系统和方法

    公开(公告)号:US07907750B2

    公开(公告)日:2011-03-15

    申请号:US11423659

    申请日:2006-06-12

    IPC分类号: G06K9/00 H04N5/225

    摘要: A system for autonomous object tracking with static camera arrangements. Each camera arrangement may minimally have a pan-tilt-zoom camera and a range or depth sensor. Imaging may provide coordinates and depth information of a tracked object. Measurements of an image centroid position and width may be obtained with processing. Maintaining an image at the center of a camera screen may be attained at a pixel width of the image. Estimation and prediction of object size and position may be processed for providing pan, tilt and zoom rates for the camera. Pan, tilt and zoom latency may be accounted for in the system. There may be a number of camera arrangements where tracking of the object may be handed off by one camera arrangement to another.

    摘要翻译: 一种用于静态摄像机布置的自动对象跟踪系统。 每个相机装置可以最小化地具有俯仰 - 变焦相机和范围或深度传感器。 成像可以提供跟踪对象的坐标和深度信息。 可以通过处理获得图像质心位置和宽度的测量。 可以在图像的像素宽度处获得在相机屏幕的中心处的图像。 可以处理物体尺寸和位置的估计和预测,以便为相机提供平移,倾斜和缩放率。 平移,倾斜和缩放延迟可能在系统中被考虑。 可能存在若干摄像机布置,其中对象的跟踪可以被一个摄像机装置切换到另一个。

    Method and system for automatically estimating the spatial positions of cameras in a camera network
    7.
    发明授权
    Method and system for automatically estimating the spatial positions of cameras in a camera network 有权
    用于自动估计摄像机网络中摄像机的空间位置的方法和系统

    公开(公告)号:US07756415B2

    公开(公告)日:2010-07-13

    申请号:US11599246

    申请日:2006-11-13

    CPC分类号: H04N5/247 G01S5/02

    摘要: A method for automatically estimating the spatial positions between cameras in a camera network utilizes unique identifying signals, such as RFID signals, transmitting between nearby cameras to estimate the relative distances or positions between cameras from received signal strength (RSS), time of arrival (TOA), or time difference of arrival (TDOA) measurements to thereby determine the neighboring relationship among the cameras. A discover-locate process can be used to discover, from the estimated relative distances, unknown cameras in the vicinity of at least three cameras at known locations. Absolute locations of the discovered unknown cameras can then be calculated using a geometric calculation. The discover-locate process can be cascaded throughout the network to discover and locate all unknown cameras automatically using previously discovered and located cameras. Such methods can be implemented in systems having cameras with transceivers integrated therein and a controller operably linked to the cameras.

    摘要翻译: 用于自动估计摄像机网络中的摄像机之间的空间位置的方法利用诸如RFID信号之类的唯一识别信号,在邻近摄像机之间传输,以从接收信号强度(RSS),到达时间(TOA)估计摄像机之间的相对距离或位置 )或到达时间差(TDOA)测量,从而确定相机之间的相邻关系。 可以使用发现定位过程从估计的相对距离中发现在已知位置处的至少三个相机附近的未知摄像机。 然后可以使用几何计算来计算发现的未知摄像机的绝对位置。 发现定位过程可以在整个网络中级联,以使用先前发现和定位的相机自动发现和定位所有未知摄像机。 这样的方法可以在具有集成有收发器的相机的系统中实现,以及可操作地连接到相机的控制器。

    METHODS AND SYSTEMS OF A USER INTERFACE
    8.
    发明申请
    METHODS AND SYSTEMS OF A USER INTERFACE 审中-公开
    用户界面的方法和系统

    公开(公告)号:US20100058247A1

    公开(公告)日:2010-03-04

    申请号:US12204574

    申请日:2008-09-04

    IPC分类号: G06F3/048

    CPC分类号: G06F8/38

    摘要: One embodiment of the application provides a method including segmenting a 3D polygon mesh into a plurality of widgets, defining a state variable for each widget, defining a behavior for each widget, and assembling a three-dimensional user interface from the widgets, the state variables, and the behaviors.

    摘要翻译: 应用程序的一个实施例提供了一种方法,包括将3D多边形网格分割成多个小部件,为每个小部件定义状态变量,定义每个小部件的行为,以及从小部件组装三维用户界面,状态变量 和行为。

    Object alignment from a 2-dimensional image
    10.
    发明授权
    Object alignment from a 2-dimensional image 有权
    二维图像对象对齐

    公开(公告)号:US08941651B2

    公开(公告)日:2015-01-27

    申请号:US13228188

    申请日:2011-09-08

    摘要: The present disclosure provides methods, machine readable media, and systems for object alignment from a 2-dimensional (2-D) image of the object. One or more embodiments include defining a 2-D shape in the 2-D image and a 3-dimensional (3-D) shape in a 3-D model of the object, mapping a number of corresponding points on the 2-D and 3-D shapes, defining the 2-D and 3-D shapes with a number of triangles, wherein a number of vertices of the number of triangles correspond to the number of points, subdividing the number of triangles defining the 2-D and 3-D shapes into a plurality of subdivided triangles that include a plurality of new vertices, and reconstructuring a 3-D image from the 2-D image by assigning a number of z-coordinates from the plurality of subdivided triangles of the 3-D shape to the plurality of subdivided triangles of the 2-D shape to create a 3-D reconstructured shape.

    摘要翻译: 本公开提供了用于从对象的二维(2-D)图像进行对象对准的方法,机器可读介质和系统。 一个或多个实施例包括在对象的3-D模型中定义2-D图像中的2-D形状和3维(3-D)形状,映射2-D上的多个对应点,以及 3-D形状,定义具有多个三角形的2-D和3-D形状,其中三角形数量的顶点数目对应于点数,细分定义2-D和3的三角形的数量 -D形成包括多个新顶点的多个细分三角形,并且通过从三维形状的多个细分三角形分配多个z坐标来从2D图像重建3D图像 到2-D形状的多个细分三角形以产生3-D重建形状。