Abstract:
A confocal imaging microscope, especially for the cellular imaging of the skin at selected locations. An imaging head (28) is gimble mounted on a multi-axis compound arm (34) to allow for precise placement of a confocal objective (116) extending from the head at selected locations against the skin of the patient. The arm (34) attaches the head to an upright station (10) which may be movable along the floor on which the station is disposed. The station (10) has a platform (16) on which a keyboard (24) and a display (22) for monitoring the images is supported. The head (28) contains an integrated assembly of the optical and mechanical components of the microscope, which control scanning and may also control fine positioning of the locations being imaged. The head (28) is detachable from the arm for manual disposition.
Abstract:
A system for bar code reading and scanning is provided having automatic bar code signal size control. In the first embodiment of the system, a processor selects on successive scans of a bar code one of a plurality of different optical power levels from a laser diode which provides a light beam illuminating the bar code. This selection is responsive to the size of the signal from a photo-detector which receives returned light from the bar code during scanning. The signal size is detected by a signal size detecting circuit, and is measured by the processor during scanning. In a second embodiment of the system, the processor calculates an optical power level after every two consecutive scans across the bar code. The laser power level is calculated differently for alternative scans occurring in different orders (even or odd counting from the first scan). For even scans, the power is calculated based upon signal size and power level on one of the prior two scans of the bar code, while for odd numbered scans (except the first scan), the power level is in a proportionately opposite relationship to the power level on the prior scan about an average power level. In a third embodiment of the system, the processor calculates the power for the next scan after each scan across the symbol. This calculation is responsive to the power level and the detected signal size of the preceding scan. In both the second and third embodiments, the laser is set to a starting power level on the first scan of the bar code.
Abstract:
A computerized control system for driving an rotor which can carry a laser or a beam deflecting mirror and is actuated by a coil thereon electromagnetically coupled to a fixed magnet or a stepper motor coil. The rotor can be part of an electromechanical oscillatory system supported by flexures or the stepper motor can be electrically biased to produce, electrodynamically a restoring force. The back EMF of the coil is sensed, translated into successive digital signals which are processed in accordance with programs in firmware of the computer to generate driving pulses which are applied to the coil to obtain desired displacement motion of oscillation suitable for scanning the beam.
Abstract:
Automatic gain control is provided for a confocal imaging system to improve the quality of images produced by the system. The confocal imaging system utilizes an illumination source, such as a laser, to produce illumination which enables imaging of an object. The automatic gain control is provided by an automatic gain controller which operates in accordance with the counted number of pixels which are too bright, the counted number of pixels which are too dim, and the counted total number of pixels, or in accordance with the average value of pixels, of each two-dimensional frame of the images from the confocal imaging system to control the intensity of the illumination source. The automatic gain controller may be operative over either the entire frame, or a region thereof.
Abstract:
A confocal imaging microscope, especially for the cellular imaging of the skin at selected locations, is ergonomic in use, compact, and positionable at the locations thereby providing for patient comfort during imaging. The head (28) contains an integrated assembly of the optical and mechanical components of the microscope. The assembly includes a main chassis plate (82). The optical components are mounted principally on one side of the plate while a PC board (130) is mounted on the opposite side of the plate. The board (130) mounts the electronic components, including interfaces, a microprocessor (222), and drivers (206, 208, 210) for motors (105, 106, 108) which control scanning and may also control fine positioning of the locations being imaged. The head (28) is detachable from the arm for manual disposition which is useful when imaging, not only the skin but other tissues, especially for research in investigating living processes at the cellular level.
Abstract:
A unitary hand-held bar code scanner and reader produces an elliptical beam, oriented with its major axis along the direction of the bars, utilizing optics employing far field diffraction effects to shape the beam and maintain its elliptical aspect (length to width ratio) constant over a distance in front of the scanner were bar codes may be located. The optics eliminates parallax even though the photodetector and light source (preferably a laser diode) are located offset from each other on a board on which the optics are mounted. A housing assembly has channels which mount the board therein without shock absorbing devices. A digital microcomputer controller and peripheral devices regulate the optical power output from the laser diode and prevents catastrophic failure, if the electrical current through the laser diode exceeds safe limits. Digital control of the gain of the electronic circuits which provide the signals from which bar code information can be decoded and for the operation and control of a motor for oscillating a deflector which scans the beam across the code are also provided utilizing the microcomputer. The microcomputer also controls interface circuits to provide compatibility with auxiliary equipment and host computers which generate commands and requires data inputs of various polarity and format.
Abstract:
A bar code label is ready by automatically initiated scanning of the bar code symbol by a scanner on a stand. Light is reflected back to the scanner as from the bars of a code being scanned. Initially, the scanner is operated in a pulsed mode with low duty cycle (5%) pulses. These pulses are reflected from a reflective area unless an object is inserted and blocks the beam path. Then (because the beam is not scanning across the code) the reflected pulses (which are detected much like the bars and spaces of the code) are not detected. The ratio of the number of generated pulses to the reflected pulses is computed for a succession of pulses. If this ratio exceeds two (i.e., that the number of effective bars is less than the number of generated pulses during the succession), then the presence of the object is detected. The system, implemented in an application program in the microprocessor controller of the bar code scanner, initiates scanning of the bar code. Upon the detection of the code (a good read) or under conditions where the label is removed before a good read, or is not removed after a good read, the scanning mode is discontinued and the pulsing mode is again initiated. The pulsing mode is initiated continually to test for the presence of an object carrying a bar code label, when not scanning.
Abstract:
A laser drive and control system which provides protection for a laser diode by preventing excess current from a power source, that normally supplies power to the laser diode, from destroying the laser diode when the voltage supplied by the power source to the laser diode decreases below a certain voltage which causes excess current. The system is implemented in CMOS circuitry for miniaturization into an integrated circuit chip.
Abstract:
A bar code label is read by automatically initiated scanning of the bar code symbol by a beam of light, as from a laser in a bar code scanner. Initially, the scanner is operated in a pulsed mode with low duty cycle (5%) pulses. These pulses are reflected from a reflective tape on one side of a detection zone or from an object carrying the label in the beam path. Then (because the beam is not scanning across the code) the reflected pulses (which are detected much like the bars and spaces of the code) are not detected. The ratio of the number of generated pulses to the reflected pulses is computed for a succession of pulses (ten pulses for example). If this ratio exceeds two (i.e., that the number of effective bars is less than the number of generated pulses during the succession), then the presence of the object is detected and the system, implemented in an application program in the microprocessor controller of the bar code scanner, initiates scanning of the bar code. Upon the detection of the code (a good read) or under conditions where the object is removed before a good read, or is not removed after a good read, the scanning mode is discontinued and the pulsing mode is again initiated. The pulsing mode is initiated continually to test for the presence of a object carrying a bar code label, when not scanning. The pulsing mode is used to detect the presence of a reflective tape or an object.
Abstract:
A reflective deflector of a light beam which scans in opposite directions across a bar code is controlled in scan angle by monitoring the AC component of a current passing through a winding of a scanning motor which oscillates the deflector to scan the beam across the code over a scan angle. The inductance of the winding corresponds to the length of the scan angle and is measured in terms of the peak to peak value of the AC component during a scan period or frame which occurs over an interval corresponding to the reciprocal of the scan rate. During successive periods, successive trains of pulses are generated. The number of pulses or their duty cycle during each period is changed in accordance with an error signal corresponding to the difference between the desired scan angle and the peak to peak value of the AC component. The pulse trains are translated into trains of current pulses which are passed through another winding of the motor in opposite directions so as to drive the rotor of the motor which reciprocates the reflector in opposite directions over the desired scan angle. By modifying the desired scan angle in accordance with changes in temperature affecting the system, the system can be compensated for temperature changes. By modifying the error signal by processing it with a filter, the response of the system to changes in scan angle can be controlled.