摘要:
The high-gain photodetector is formed in a semiconductor-material body which houses a PN junction and a sensitive region that is doped with rare earths, for example erbium. The PN junction forms an acceleration and gain region separate from the sensitive region. The PN junction is reverse-biased and generates an extensive depletion region accommodating the sensitive region. Thereby, the incident photon having a frequency equal to the absorption frequency of the used rare earth crosses the PN junction, which is transparent to light, can be captured by an erbium ion in the sensitive region, so as to generate a primary electron, which is accelerated towards the PN junction by the electric field present, and can, in turn, generate secondary electrons by impact, according to an avalanche process. Thereby, a single photon can give rise to a cascade of electrons, thus considerably increasing detection efficiency.
摘要:
A nanometric device is disclosed for the measurement of the electrical conductivity of individual molecules and their quantum effects having: a substrate surmounted by, in order, a barrier to diffusion layer, an electrically conductive layer, a “bounder” layer and an electrically insulating layer; and a suitable miniaturized probe; wherein the “bounder” layer and the electrically insulating layer have at least one nanometric pore formed within, the base of which consists of the electrically conductive layer. A method for the production of a nanometric device for the measurement of the electrical conductivity of individual molecules and their quantum effects, and a method for the measurement of the electrical conductivity and quantum effects of a molecule of interest, are also disclosed.
摘要:
A nanometric device is disclosed for the measurement of the electrical conductivity of individual molecules and their quantum effects having: a substrate surmounted by, in order, a barrier to diffusion layer, an electrically conductive layer, a “bounder” layer and an electrically insulating layer; and a suitable miniaturized probe; wherein the “bounder” layer and the electrically insulating layer have at least one nanometric pore formed within, the base of which consists of the electrically conductive layer. A method for the production of a nanometric device for the measurement of the electrical conductivity of individual molecules and their quantum effects, and a method for the measurement of the electrical conductivity and quantum effects of a molecule of interest, are also disclosed.
摘要:
A semiconductor device for electro-optic applications includes a rare-earth ions doped P/N junction integrated on a semiconductor substrate. The semiconductor device may be used to obtain laser action in silicon. The rare-earth ions are in a depletion layer of the doped P/N junction, and are for providing a coherent light source cooperating with a waveguide defined by the doped P/N junction. The doped P/N junction may be the base-collector region of a bipolar transistor, and is reverse biased so that the rare-earth ions provide the coherent light.