Abstract:
The present invention, generally speaking, provides an inductor-free power converter based on mechanical resonance using a single MEM device. Mechanical resonance and silicon strain energy are used as building blocks for a power converter, such as a boost converter. In such a “micromechanical boost converter,” arbitrary step-up voltages can be developed using only a single micromechanical component. A dramatic improvement in power density is obtained as compared to conventional capacitor and inductor technologies. For typical MEM applications, such a converter, operating without discrete parts, can readily be fabricated together with the MEM device it powers. For non-MEM applications (e.g., the on-chip generation of high voltages, as for EEPROM programming, for example), the improvement in power density offers significant benefits, particularly for portable equipment.
Abstract:
A lead frame for use in an integrated circuit package is disclosed herein. The lead frame includes a magnetic component winding wherein the winding is formed as an integral part of the lead frame. Additional windings may be formed as an integral part of the lead frame and then folded into position over the first winding to form a multiple layered magnetic component winding. In one embodiment, the lead frame based winding is coated with a magnetic material to form a lead frame based inductor. There is also disclosed a method of producing a lead frame including a magnetic component winding wherein the winding is formed as an integral part of the lead frame.