Abstract:
A digitally controlled impedance driver circuit including a number of fingers, some of which having FETs and series resistors sized in binary or other differential ratios, and some of the higher power FETs being sized in equal ratio and perhaps sharing a series resistor. A DCI controller circuit periodically determines a configuration of the DCI driver circuit that would result in the DCI driver circuit approximating a target impedance. Each time the DCI controller circuit does this, a comparator determines if the impedance of the DCI driver circuit should be increased or decreased. A noise attenuation circuit turns off (or on) only one of the high power fingers if the controller circuit determines that more (or less) impedance is needed even if turning off (or on) only one of the fingers would not result in the configuration of the DCI driver circuit determined by the controller circuit.
Abstract:
A dynamic phase adjustment circuit that includes a multi-tap delay line that receives a clock input signal. The multi-tap delay line includes an initial portion that is adjustable, and final portion after the adjustable portion. A number of registers receive the same data. However, the clock signal that causes the registers to sample is received from a corresponding delay element in the final portion of the multi-tap delay line. An edge detect and data decision circuit receives the sampled data values from each of the registers. Sampling resolution is improved over the PLL-based dynamic phase adjustment circuit since the clock signal is delayed using delay elements, which can be made with relatively small delays. Furthermore, the circuit does not contain excessive circuit elements thereby allowing the dynamic phase adjustment circuit to be contained in a small area.