Abstract:
An exemplary liquid crystal display panel includes a substrate and first conductive wires. The first conductive wires are arranged at a surface of the substrate. Each of the first conductive wires includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is sandwiched between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.
Abstract:
A liquid crystal display panel includes a substrate, a thin film transistor array, a circuit, and a dummy circuit. One surface of the substrate is divided into a display region and a wiring region. The thin film transistor array is formed on the display region. The circuit and the dummy circuit are formed on the wiring region, the dummy circuit is adjacent to the circuit, and the circuit and the dummy circuit protrude from the substrate.
Abstract:
An exemplary method for fabricating a liquid crystal panel includes: providing a first substrate (210); forming a plurality of color resin layers (212) and a black matrix (27) spacing the color resin layers on the first substrate; forming a plurality of compressible photo spacers (24) on the black matrix, the photo spacers comprising a plurality of photo spacers having a first length and a plurality of photo spacers having a second length different from the first length, wherein the first length and the second length are measured perpendicular to the first substrate; providing a second substrate; coating a sealant along an outer periphery of the second substrate, whereby the second substrate and the sealant cooperatively defining a space; dropping liquid crystal on the second substrate in the space; placing the first substrate onto the second substrate and pressing the first substrate; and curing the sealant.
Abstract:
An exemplary MVA LCD (2) includes a first substrate (21), a second substrate (22), and a liquid crystal layer (23) interposed between the two substrates. A common electrode (29) and protrusions (211) are formed at an inner side of the first substrate in order. Gate electrodes (221) and pixel electrodes (222) are formed on an inner side of the second substrate. A patterned gate insulating layer (223) is formed at the second substrate. The patterned gate insulating layer covers the gate electrodes, and a part of each pixel electrode.
Abstract:
A liquid crystal panel (100) includes a first and a second substrates (110, 120), a liquid crystal layer (130) disposed between the first and second substrates, and a sealant (140) disposed at a peripheral region between the first and second substrates for sealing liquid crystal molecules between the first and second substrates. A baffle-wall (150) is disposed inside the sealant at a peripheral portion of the second substrate. The baffle-wall, the sealant and the first and second substrates cooperatively define at least one retaining space (160) therebetween. The baffle-wall and the first substrate cooperatively define at least one channel (170) therebetween, the channel communicating between the liquid crystal layer and the retaining space. During manufacturing, the baffle-wall helps prevent air bubbles from returning to the liquid crystal layer. Thus the liquid crystal panel has a high display quality.
Abstract:
A belt buckle may include a buckle cooperating with a belt body. The belt body comprises a connecting portion formed at one end thereof, and a plurality of punch holes arranged at the other end of the belt body. The buckle has a frame, a spring, a prong, a control unit, and a cover, and a shaft is located at one end of the frame. The shaft of the frame is adapted to pivotally connect to the connecting portion of the belt body, and a connecting base is formed at the other end of the frame. The spring is installed in the connecting base, and an open groove is formed at a middle section of the connecting base. The control unit comprises a dodging slot and a blocking portion located at positions corresponding to the open groove.
Abstract:
An exemplary MVA LCD (2) includes a first substrate (21), a second substrate (22), and a liquid crystal layer (23) interposed between the two substrates. A common electrode (29) and protrusions (211) are formed at an inner side of the first substrate in order. Gate electrodes (221) and pixel electrodes (222) are formed on an inner side of the second substrate. A patterned gate insulating layer (223) is formed at the second substrate. The patterned gate insulating layer covers the gate electrodes, and a part of each pixel electrode.
Abstract:
An exemplary liquid crystal display panel includes a substrate and first conductive wires. The first conductive wires are arranged at a surface of the substrate. Each of the first conductive wires includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is sandwiched between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided.
Abstract:
A mother thin film transistor (TFT) array substrate includes an insulating substrate, at least two TFT arrays and printed wirings. The TFT array includes TFTs formed on the insulating substrate. The printed wirings are connected to the TFT arrays. The printed wiring includes a discontinuous metal layer and at least one bridge layer connecting the discontinuous metal layer. The bridge layer is made from corrosion-resistant material.
Abstract:
The present disclosure provides a photomask. The photomask includes a first integrated circuit (IC) feature formed on a substrate; and a second IC feature formed on the substrate and configured proximate to the first IC feature. The first and second IC features define a dense pattern having a first pattern density. The second IC feature is further extended from the dense pattern, forming an isolated pattern having a second pattern density less than the first pattern density. A transition region is defined from the dense pattern to the isolated pattern. The photomask further includes a sub-resolution rod (SRR) formed on the substrate, disposed in the transition region, and connected with the first IC feature.