Abstract:
The present invention provides a high frequency circuit, a high frequency circuit component, and a communication apparatus that uses the same, the circuit capable of being used for different communication systems, having a high receiving sensitivity and restraining the loss of transmission power. A high frequency circuit of the present invention includes: a first antenna terminal (ANT1) and a second antenna terminal (ANT2); and at least a transmitting terminal (Tx) and a first and a second receiving terminal (Rx1, Rx2) for a first communication system. With each switch, the first and the second receiving terminals (Rx1, Rx2) can be each simultaneously connected to the first and the second antenna terminals (ANT1, ANT2). Also, the transmitting terminal (Tx) is selectively connectable to either of the first and second antenna terminals (ANT1, ANT2).
Abstract:
A high-frequency circuit comprising a switch circuit connected to an antenna terminal, first and second diplexer circuits connected to the switch circuit, first and second power amplifier circuits connected to the first diplexer circuit, first and second bandpass filter circuits connected to the first and second power amplifier circuits, a third bandpass filter circuit connected to the second diplexer circuit, a detection circuit disposed between the switch circuit and the first diplexer circuit, and a low-noise amplifier circuit disposed between the switch circuit and the second diplexer circuit.
Abstract:
A multiband high-frequency circuit comprising a first switch SPDT1 for switching the connections of a multiband antenna to transmitting circuits 11bg-T, 11a-T and receiving circuits 11bg-R, 11a-R of first and second communications systems, and a transmitting/receiving circuit BLT-TR of a third communications system, a diplexer circuit Dip1 for branching a high-frequency signal to 11a-R and 11bg-R or BLT-TR and a diplexer circuit Dip2 for branching a high-frequency signal to 11bg-T and 11a-T, both of which are disposed downstream of SPDT1, each diplexer circuit Dip1, Dip2 comprising a lower-frequency-side filter and a high-frequency-side filter, a bandpass filter BPF1 being disposed downstream of the lower-frequency-side filter of the diplexer circuit Dip1, and a second switch SPDT2 being disposed downstream of the bandpass filter BPF1.
Abstract:
A high-frequency circuit device comprising at least first and second antenna terminals, at least first and second transmitting terminals for a first communications system, at least first and second receiving terminals for a first communications system, two or more switch circuits, and two or more filter circuits, the first transmitting terminal for the first communications system being connectable to the first antenna terminal, the second transmitting terminal for the first communications system being connectable to the second antenna terminal, the first receiving terminal for the first communications system being connectable to the first antenna terminal, and the second receiving terminal for the first communications system being connectable to the second antenna terminal.
Abstract:
A high-frequency device having high-frequency-signal-treating circuits in and on a laminate substrate comprising pluralities of dielectric layers having conductor patterns, the high-frequency-signal-treating circuits having amplifier circuits and switch circuits; terminals including input and output terminals of high-frequency signals, the power supply terminals of the amplifier circuits and the power supply terminals of the switch circuits being formed on one main surface of the laminate substrate; power supply lines each having one end connected to each of the power supply terminals of the amplifier circuits and power supply lines each having one end connected to each of the power supply terminals of the switch circuits being formed on one dielectric layer to constitute a power supply line layer; a first ground electrode being arranged on the side of the main surface with respect to the power supply line layer, the first ground electrode overlapping at least part of the power supply lines in a lamination direction; a second ground electrode being arranged on the opposite side of the first ground electrode with respect to the power supply line layer, the second ground electrode overlapping at least part of the power supply lines in a lamination direction; and the high-frequency-signal-treating circuits being arranged on the opposite side of the power supply line layer with respect to the second ground electrode.
Abstract:
A high-frequency switch circuit common to a plurality of frequency bands includes a first high-frequency switch adapted to pass transmission signals and block received signals; and a demultiplexer. The high-frequency switch circuit passes one of the received signals of first and second frequency bands and blocks the other.
Abstract:
A high-frequency circuit comprising a switch circuit connected to an antenna terminal, first and second diplexer circuits connected to the switch circuit, first and second power amplifier circuits connected to the first diplexer circuit, first and second bandpass filter circuits connected to the first and second power amplifier circuits, a third bandpass filter circuit connected to the second diplexer circuit, a detection circuit disposed between the switch circuit and the first diplexer circuit, and a low-noise amplifier circuit disposed between the switch circuit and the second diplexer circuit.
Abstract:
A high-frequency module is connected to a transmitting circuit, a receiving circuit, and an antenna to control the connections between the transmitting circuit and the antenna and between the receiving circuit and the antenna. The module includes means for controlling transmitted signals, which includes a first phase-shift circuit and a high-frequency amplifier provided between the antenna and the transmitting circuit. The high-frequency amplifier and the first phase-shift circuit are integrated into a module composed of a plurality of dielectric layers.
Abstract:
A multi-band high-frequency circuit for performing wireless communications among pluralities of communication systems having different communication frequencies. A high-frequency switch circuit contains: switching elements for switching the connection of pluralities of multi-band antennas to transmitting circuits and receiving circuits; a first diplexer circuit disposed between the high-frequency switch circuit and transmitting circuits for branching a high-frequency signal into frequency bands of the communication systems; and a second diplexer circuit disposed between the high-frequency switch circuit and receiving circuits for branching a high-frequency signal into frequency bands of the communication systems.
Abstract:
A multi-band high-frequency circuit for performing wireless communications among pluralities of communication systems having different communication frequencies, comprising a high-frequency switch circuit comprising switching elements for switching the connection of pluralities of multi-band antennas to transmitting circuits and receiving circuits; a first diplexer circuit disposed between the high-frequency switch circuit and transmitting circuits for branching a high-frequency signal into frequency bands of the communication systems; a second diplexer circuit disposed between the high-frequency switch circuit and receiving circuits for branching a high-frequency signal into frequency bands of the communication systems; the first and second diplexer circuits each comprising a lower-frequency filter circuit and a higher-frequency filter circuit, a bandpass filter circuit being used as the lower-frequency filter circuit in the second diplexer circuit, or disposed between the lower-frequency filter circuit in the second diplexer circuit and the receiving circuit, the high-frequency switch circuit comprising first to fourth ports, the first port being connected to a first multi-band antenna, the second port being connected to a second multi-band antenna, the third port being connected to the first diplexer circuit, and the fourth port being connected to the second diplexer circuit; and the switching elements being controlled in an ON or OFF state to select a multi-band antenna for performing wireless communications and to switch the connection of the selected multi-band antenna to the transmitting circuit or the receiving circuit.