Abstract:
A method includes receiving a Code Division Multiple Access (CDMA) carrier carrying at least a pilot channel. Differences are computed between selected soft pilot symbols received on the pilot channel. Based on the computed differences between the selected soft pilot symbols received on the pilot channel, a level of noise is estimated for a data channel that is to be transmitted on the CDMA carrier.
Abstract:
Briefly, a decoder to decode a desired symbol within a plurality of multipath components. The decoder may include processing window that may be positioned around the desired symbol within a group of multipath components. A method for decoding the symbol is also provided.
Abstract:
An auxiliary antenna device includes a baseband interface circuit to communicate with a wireless communications device. The wireless communications device and auxiliary antenna device exchange digital baseband data, and the auxiliary antenna device may augment or complement RF circuitry and antennas in the wireless communications device.
Abstract:
A signal processing apparatus to equalize a signal in a multipath channel, where the equalization is based upon forming a correlation vector and the inverse of a covariance matrix, where the covariance matrix is smaller in dimension than the correlation vector. In one embodiment, the signal processing apparatus forms an extended matrix from the inverse of the covariance matrix, equal in dimension to the correlation vector, by selecting one or more rows of the inverse covariance matrix and shifting the selected one or more rows to form the extended matrix. The extended matrix is multiplied by the correlation vector to provide filter weights to the equalizer. In some embodiments, filtering is performed by a sliding window correlator based upon the selected one or more rows of the covariance matrix, followed by filtering based upon the correlation vector.
Abstract:
A receiver includes a searcher to identify pilot signals within a received signal and a pilot tracking unit to continuously track pilot signals identified by the searcher. The pilot signals tracked by the pilot tracking unit may include pilot signals associated with an affiliated base station as well as pilot signals associated with non-affiliated base stations. In at least one embodiment, the pilot tracking unit continuously tracks most or all of the pilot signals identified by the searcher.
Abstract:
Methods and systems in a wireless receiver for enabling the reception of input signals at varied power levels in the presence of co-channel interference utilizing combinations of space-time adaptive processing (STAP), interference cancellation multi-user detection (MUD), and combined STAP/MUD techniques. In MUD, code, timing, and possibly channel information of multiple users are jointly used to better detect each individual user. The novel combination of adaptive signal reconstruction techniques with interference cancellation MUD techniques provides accurate temporal cancellation of interference with minimal interference residuals. Additional methods and systems extend adaptive signal reconstruction techniques to take Doppler spread into account. STAP techniques permit a wireless receiver to exploit multiple antenna elements to form beams in the direction of the desired signal and nulls in the direction of the interfering signals. The combined STAP-MUD methods and systems increase the probability of successful user detection by taking advantage of the benefits of each reception method. An additional method and system utilizes STAP techniques in the case where no pilot signal is available. This method compares the outputs of various hypothesized STAP solutions.
Abstract:
A method includes receiving a Code-Division Multiple Access (CDMA) signal carrying at least a data channel, a pilot channel and a control channel. A first noise level is estimated on the pilot channel. A second noise level is estimated on the control channel. The first estimated noise level and the second estimated noise level are combined to produce a noise estimate of noise on the data channel.
Abstract:
A receiver includes a searcher to identify pilot signals within a received signal and a pilot tracking unit to continuously track pilot signals identified by the searcher. The pilot signals tracked by the pilot tracking unit may include pilot signals associated with an affiliated base station as well as pilot signals associated with non-affiliated base stations. In at least one embodiment, the pilot tracking unit continuously tracks most or all of the pilot signals identified by the searcher.
Abstract:
Briefly, a decoder to decode a desired symbol within a plurality of multipath components. The decoder may include processing window that may be positioned around the desired symbol within a group of multipath components. A method for decoding the symbol is also provided.
Abstract:
Methods and systems in a wireless receiver for enabling the reception of input signals at varied power levels in the presence of co-channel interference utilizing combinations of space-time adaptive processing (STAP), interference cancellation multi-user detection (MUD), and combined STAP/MUD techniques. In MUD, code, timing, and possibly channel information of multiple users are jointly used to better detect each individual user. The novel combination of adaptive signal reconstruction techniques with interference cancellation MUD techniques provides accurate temporal cancellation of interference with minimal interference residuals. Additional methods and systems extend adaptive signal reconstruction techniques to take Doppler spread into account. STAP techniques permit a wireless receiver to exploit multiple antenna elements to form beams in the direction of the desired signal and nulls in the direction of the interfering signals. The combined STAP-MUD methods and systems increase the probability of successful user detection by taking advantage of the benefits of each reception method. An additional method and system utilizes STAP techniques in the case where no pilot signal is available. This method compares the outputs of various hypothesized STAP solutions.