摘要:
Provided is a cathode for molten carbonate fuel cells, including a porous nickel-based electrode containing nickel particles, and metal particles coated on the electrode, wherein at least a part of the metal particles are attached to the surface of the nickel particles. A method for preparing the same is also provided. The cathode for molten carbonate fuel cells accelerates the cathodic oxygen reduction and reduces polarization resistance occurring at the cathode, thereby providing a fuel cell with improved performance even at low temperature. Additionally, it is possible to improve the service life of a molten carbonate fuel cell due to such low operation temperature.
摘要:
Disclosed is a molten carbonate fuel cell comprising a reinforced lithium aluminate matrix, a cathode, an anode, a cathode frame channel and an anode frame channel, wherein at least one of the cathode frame channel and the anode frame channel is filled with a lithium source. Disclosed also are a method for producing the same, and a method for supplying a lithium source. The molten carbonate fuel cell in which a lithium source is supplied to an electrode has high mechanical strength and maintains stability of electrolyte to allow long-term operation.
摘要:
Disclosed is a molten carbonate fuel cell comprising a reinforced lithium aluminate matrix, a cathode, an anode, a cathode frame channel and an anode frame channel, wherein at least one of the cathode frame channel and the anode frame channel is filled with a lithium source. Disclosed also are a method for producing the same, and a method for supplying a lithium source. The molten carbonate fuel cell in which a lithium source is supplied to an electrode has high mechanical strength and maintains stability of electrolyte to allow long-term operation.
摘要:
A method for coating the core ceramic particles by emulsion flame spray is provided. In particular, the method forms a core ceramic particle simultaneously with coating the surface of the formed core ceramic particles by emulsion flame spray pyrolysis. The core ceramic particle may be coated in a single stage by emulsion flame spray pyrolysis conventionally used in the art, through putting coating material precursor into the oil phase of emulsion solution at a stage of preparing emulsion solution in emulsion flame spray pyrolysis process.