摘要:
An elevated target amount of electrolyte is used to initially fill a molten carbonate fuel cell that is operated under carbon capture conditions. The increased target electrolyte fill level can be achieved in part by adding additional electrolyte to the cathode collector prior to start of operation. The increased target electrolyte fill level can provide improved fuel cell performance and lifetime when operating a molten carbonate fuel cell at high current density with a low-CO2 content cathode input stream and/or when operating a molten carbonate fuel cell at high CO2 utilization.
摘要:
The purpose of the present invention is to provide an industrially advantageous method for producing α-lithium aluminate which has physical properties that are suitable for use as an electrolyte holding plate of a MCFC having excellent thermal stability, even if the α-lithium aluminate is a fine material having a BET specific surface area of 10 m2/g or higher in particular. Provided is a method for producing α-lithium aluminate characterized by subjecting a mixture (a), which is obtained by mixing transitional alumina and lithium carbonate at an Al/Li molar ratio of 0.95-1.01, to a first firing reaction so as to obtain a fired product, and subjecting a mixture (b), which is obtained by adding an aluminum compound to the obtained fired product at quantities whereby the molar ratio of aluminum atoms in the aluminum compound relative to lithium atoms in the fired product (Al/Li) is 0.001-0.05, to a second firing reaction.
摘要:
Disclosed is a molten carbonate fuel cell comprising a reinforced lithium aluminate matrix, a cathode, an anode, a cathode frame channel and an anode frame channel, wherein at least one of the cathode frame channel and the anode frame channel is filled with a lithium source. Disclosed also are a method for producing the same, and a method for supplying a lithium source. The molten carbonate fuel cell in which a lithium source is supplied to an electrode has high mechanical strength and maintains stability of electrolyte to allow long-term operation.
摘要:
A high-performance carbonate electrolyte for use in a molten carbonate fuel cell comprising a cathode electrode, an anode electrode, an electrolyte matrix and at least a cathode current collector abutting said cathode electrode, the high-performance carbonate electrolyte comprising: a first carbonate electrolyte stored in at least the cathode electrode of the molten carbonate fuel cell comprising a mixture of eutectic Li/Na carbonate electrolyte doped with one or more additive materials and one or more lithium precursors, wherein the additive materials include one or more of Rb2CO3, Cs2CO3, BaCO3, La2O3, Bi2O3, Ta2O5 and mixtures thereof, and a second carbonate electrolyte stored in at least the cathode current collector, the second carbonate electrolyte having a composition that is the same or different from the first carbonate electrolyte.
摘要翻译:一种用于熔融碳酸盐燃料电池的高性能碳酸盐电解质,包括阴极电极,阳极电极,电解质基质和与所述阴极接触的至少阴极集电体,所述高性能碳酸盐电解质包括:第一碳酸盐电解质 存储在熔融碳酸盐燃料电池的至少阴极中,其包含掺杂有一种或多种添加剂材料的共晶Li / Na碳酸盐电解质和一种或多种锂前体的混合物,其中所述添加剂材料包括一种或多种Rb 2 CO 3,Cs 2 CO 3, BaCO 3,La 2 O 3,Bi 2 O 3,Ta 2 O 5及其混合物,以及存储在至少阴极集电体中的第二碳酸酯电解质,所述第二碳酸酯电解质具有与所述第一碳酸酯电解质相同或不同的组成。
摘要:
A direct carbon fuel cell having an anode electrode of carbon particles pre-wetted with carbonate, a cathode electrode, and an electrolyte layer disposed between the anode electrode and the cathode electrode and containing a molten carbonate. The fuel cell includes a wicking feature whereby excess carbonate produced during the operation of the fuel cell is removed. The use of carbonate pre-wetted carbon particles as the anode provides a network of empty voids, facilitating the removal of CO2 gas from the cell, thereby enhancing fuel cell performance.
摘要:
Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (LixNiO, where x is 0.1 to 1) and X-doped LiMeO2, wherein X is one of Mg, Ca, and Co.
摘要:
The invention relates to a method for producing a melt carbonate fuel cell comprising a cathode layer made from porous nickel oxide, an anode layer made from porous nickel and a melt arranged between the cathode layer and the anode layer, received in the form of a finely porous electrolyte matrix melt consisting of one or more alkali metal carbonates as electrolytes. In order to produce the cathode layer, a sintered, coated electrode path, coated with catalytically activating particles, made of porous nickel in the fuel cell operation mode is reacted to form nickel oxide. According to the invention, the electrode path is coated with catalytic activating particles made from one or more non-oxidic inorganic metal compounds, which are reacted to form the corresponding metal oxides under gas development. The invention relates to another similar fuel cell with increased activation of the cathode reaction.
摘要:
In accordance with one embodiment of the invention, a fuel cell flow field is provided with a porous catalyst layer formed over the flow field. The flow field can be used to ionize reactant gases. In accordance with another embodiment, a high temperature fuel cell membrane, such as a polymer electrolyte membrane, can be formed with a porous layer of catalyst.
摘要:
An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.
摘要:
A fuel cell system includes multiple fuel cells. Each fuel cell may be a proton exchange membrane fuel cell that is arranged to optimize the performance of the fuel cell. The fuel cells may include silicon wafer substrates that define flow channels through the fuel cells for hydrogen and oxidant gases. The fuel cells can include obstructions within the flow channels that divert the flow of gases as the gases pass through the fuel cells. The fuel cell system may include multiple fuel cell modules, with each module including multiple stacked fuel cells.