Abstract:
A system and method are provided for controlling Quality of Service (QoS), content quality, or both QoS and content quality in a content sharing network based on user relationships. More specifically, QoS, content quality, or both QoS and content quality may be controlled based on a relationship of a user of a network node requesting content and either a user of a network node hosting the requested content or an owner of the requested content, a relationship between the user of the network node requesting the content and the content, or any combination thereof.
Abstract:
A controlled content distribution system (CCDS) employs a peer-level application into which a content producer can import digital content (e.g., video, audio, graphic, image, text, code files, etc.) The content producer identifies distribution parameters including an initial distribution list and a level limit representing the maximum number of levels, or degrees of separation for allowed distribution in a FOAF social network. Distribution parameters also include an alteration definition for one or more allowable levels in the network. Alteration definitions may identify a file degradation characteristic, file augmentation, or deletion parameter for altering the digital content from its original form. Alteration definitions often vary at each level. A distribution package is created by the CCDS and includes the digital content, a configuration data file, a key ID and a license key seed. The distribution package is processed at a FOAF license server before being sent to additional content recipients.
Abstract:
A system and method are provided for identifying participants for a preferential ad-hoc network using a peer-to-peer (P2P) network and then establishing the ad-hoc network with the identified participants. In general, an initiating peer node provides a request for participants for an ad-hoc network to the P2P network, wherein the request includes content information describing content stored at the initiating peer node. The content information is used by the peer nodes receiving the request to determine whether to join the ad-hock network. The peer nodes receiving the request that decide to join the ad-hoc network respond to the initiating peer node via the P2P network. All or select ones of the peer nodes responding to the request are identified as the participants for the ad-hoc network. Once the participants are identified, the initiating peer node dynamically establishes the ad-hoc network with the identified participants.
Abstract:
A controlled content distribution system (CCDS) employs a peer-level application into which a content producer can import digital content (e.g., video, audio, graphic, image, text, code files, etc.) The content producer identifies distribution parameters including an initial distribution list and a level limit representing the maximum number of levels, or degrees of separation for allowed distribution in a FOAF social network. Distribution parameters also include an alteration definition for one or more allowable levels in the network. Alteration definitions may identify a file degradation characteristic, file augmentation, or deletion parameter for altering the digital content from its original form. Alteration definitions often vary at each level. A distribution package is created by the CCDS and includes the digital content, a configuration data file, a key ID and a license key seed. The distribution package is processed at a FOAF license server before being sent to additional content recipients.
Abstract:
A content management system for managing content stored by a number of networked Personal Video Recorders (PVRs) associated with a user community is provided. More specifically, the storage space of each of the personal video recorders is physically or logically partitioned into a personal space and a community space. The content management system manages the community spaces of the PVRs such that content relevant to the user community is stored in the collective community space of the PVRs and available to the user community.