Abstract:
A method of calibration correcting inaccuracies in measurement of force, acceleration and orientation vectors introduced during fabrication of motion and ground reaction forces analysis system embedded in footwear insoles.
Abstract:
Time synchronization of an access point base station. The method may include receiving an assignment message from a service provider comprising a plurality of parameters. The plurality of parameters may include an access point base station frequency assignment, a network identifier, an access point base station identifier, a neighbor list, a PN offset, and/or a scrambling code. The access point base station may then synchronize with the macro base station. Synchronizing may include searching for a strongest macro base station in the neighbor list, synchronizing a long code of the access point base station to the macro base station, estimating a propagation delay between the macro base station and the access point base station, and initializing a state of the access point base station PN code using the propagation delay to provide system time synchronization.
Abstract:
This invention allows for remote monitoring of the skier/skiing performance. The system consists of a various MEMS sensors embedded in skier clothing and equipment. These sensors measure instantaneous changes in acceleration in x/y/z axis and changes in earth magnetic field—relative to the skier position, to provide six degree of freedom in calculation of skier position as well as moments applied to the ski edge and forces experiences by the skier body. These sensors communicate with the monitoring application residing in the user wireless terminal (call phone) over the PAN wireless network. The instantaneous measurements are analyzed either locally or remotely and when the system is configured in an active mode, a corrective response to the MEMS actuators embedded in the ski or ski bindings may be send does changing the parameters of the run or provide enhanced safety.
Abstract:
A method to enable scheduling communications activities for an electronic communication device configured to communicate across a communication network is provided. The method comprises the steps of scheduling a communication activity during a scheduling window such that the communication activity is scheduled to occur toward the end of a communication window; entering a power-save mode after the scheduling step; and transitioning from the power-save mode prior to the scheduled communication activity. In one embodiment the method can further include a step of conducting the scheduled communication activity and transitioning back to the power-save mode after a next communication activity is scheduled or be implemented to allow the step of conducting the scheduled communication activity and transitioning back to the power-save mode at the end of the next communication window. In one embodiment the transitioning step comprises the steps of awakening from the power-save mode and synchronizing with the communication network, wherein synchronizing can comprise the step of synchronizing with electronic communication device associated with the communication network.
Abstract:
A system and method for creating a localized silence area. A mobile device may be registered with an access point base station. Any direct communication links from the mobile device to any other base stations may be removed. An indication may be given to the mobile device that the mobile device is in a localized silence zone. The indication may include a request that the mobile device operate in a silent mode, information about making outgoing calls, information about receiving incoming calls, or a combination of these. Procedures for incoming voice calls to the mobile device may be different for different priority levels.
Abstract:
Extending acknowledgement messages from two states to at least three states is described, whereby such messages constitute a packet quality indication (PQI) reflecting quality or usability of the received signal. In an HARQ system, a transmitting station can flexibly select a better alternative for the next information to transmit on the basis of such PQI. One aspect includes determining how best to correct an unsuccessful packet transmission based on quality information about the specific packet. Implementing apparatus and procedures are described.
Abstract:
A wireless communication mobile station (MS or UE) evaluates and categorizes an expected effectiveness of base stations (BSs or Node-Bs) in its Active Set for receiving uplink data, and instructs at least the less effective BSs to suppress some or all acknowledgment signals with respect to particular uplink data packets from the UE. A Target Select message is described for notifying the BSs of their Acknowledgment Target Select category, and a Target Select channel is described for conveying the Target Select message to all Active Set BSs so that they can suppress acknowledgment signaling with respect to corresponding data packets as appropriate for their Acknowledgment Target Select category.
Abstract:
A method and system for providing acknowledgment and/or data rate control (DRC) information with respect to data packets conveyed on a plurality of active forward link (FL) carriers. The number of reverse link (RL) carriers employed for the acknowledgment and/or DRC information may be less than the number of active FL carriers, and may be a single carrier, even when the signaling protocol is, in the limit, consistent with presently-supported standardized CDMA protocols. Code multiplexing techniques are employed inventively to convey information for up to fifteen FL carriers on a single, standard CDMA channel designed to provide such signaling for only a single FL carrier at a time.
Abstract:
In a CDMA cellular radiotelephone system, a soft handoff (SHO) is performed when a mobile station communicates with a new inter-generation base station, without interrupting communications with the old base station. Currently, a SHO can only be used between CDMA channels having identical frequency assignments and within the same system generation (i.e., 2G⇄2G, or 3G⇄3G, where 2G is a second generation system, and 3G is a third generation system). The proposed IS-2000 standard for a 2G⇄3G handoff is a hard handoff or “Break-Before-Make” procedure, which greatly reduces the quality of service (QOS). The present invention allows for SHO between second and third generation CDMA systems (2G⇄3G and 3G⇄2G), by modifying the proposed messaging structure. This provides a smooth service transition when a mobile station travels from one service area (i.e., 2G), to another service area (i.e., 3G), using the SHO or “Make-Before-Break” approach.
Abstract:
A method for power control during soft handoffs is disclosed for a multi-user CDMA system having mixed system types, such as IS-95A/B and IS-2000. The procedure includes modifying the Forward Power Control (FPC) and Reverse Power Control (RPC) processing, in order to maintain proper power control between a mobile station and two different base stations during a soft handoff. The mobile station maintains the forward and reverse power control while still receiving forward links from different generation base stations, and while maintaining the reverse link to only one of these base stations. Prior to the soft handoff the second base station suspends FPC and RPC processing. Once the soft handoff is complete, the second base station resumes FPC and RPC processing. Furthermore, the mobile station's initial transmit power level is set to be within a predetermined limit.