Abstract:
A fiber-bond type ceramic material 4 is produced by using as raw material fibers 1 inorganic fibers of Si—M—C—O synthesized by melt spinning polycarbosilane, then infusibilizing the produced threads, and firing the set threads, forming from the raw material fibers a woven fabric 2 having all the fibers thereof extended perpendicularly or obliquely relative to the direction of compression during the course of a hot-press fabrication at a weaving step 12, heat-treating the woven fabric in the air, thereby preparing a woven fabric of oxidized fibers 3 provided with an oxide layer on the surface thereof at an oxidizing step 14, and subjecting the woven fabric of oxidized fibers to a hot-press fabrication while compressing the fabric in the direction of the compression thereby causing the oxide layers on the surface to adhere fast to each other and form a matrix at a hot-press step 16.
Abstract:
Provided is a toroidal pressure vessel having extremely high pressure resistance. Laminating latitudinal reinforcing fiber layers (32) enables to improve a strength in a latitudinal direction of a pressure vessel (1). Moreover, putting reinforcing fibers (32a) constituting those laminated latitudinal reinforcing fiber layers (32) in continuity enables to further improve the strength in the latitudinal direction of the pressure vessel (1), for example compared with a case where the reinforcing fibers are divided for each layer.
Abstract:
A preform for a fiber-reinforced composite material including a bent portion along a curved line for bending, a flange portion corresponding to an outer circumferential portion, and a semi-cylindrical portion formed by bending an inner circumferential portion along the curved line for bending located in a flat plane or a curved plane region. The preform is formed from a precursor having a predetermined extension. The outer circumferential portion corresponds to a first region where a first plurality of reinforced fibers is partially disposed in parallel along the curved line for bending. The inner circumferential portion corresponds to a second region constituted solely of a second plurality of reinforced fibers disposed throughout the entire area, so as to intersect the first plurality of reinforced fibers at a predetermined angle in the first region.
Abstract:
Technical Field of the Invention: A structural member required to have a prescribed strength in an aircraft, an automobile, a vessel or a constructed structure, etc., especially in a circular bore portion or a curved portion such as a wing or a body of an aircraft. Technical Problem: A preform for a fiber-reinforced composite material to be used as a structural member of a fiber-reinforced composite material having a curved portion is to be manufactured through a low-cost mass production. Means of Solving the Problem A preform for a fiber-reinforced composite material (20) including a bent portion (22) along a curved line for bending (12), a flange portion (24) corresponding to an outer circumferential portion (14) and a semi-cylindrical portion (26) formed by bending an inner circumferential portion (16), based on a precursor of a preform for a fiber-reinforced composite material (10) provided with the curved line for bending (12) located in a flat plane or a curved plane region having a predetermined extension; the outer circumferential portion (14) corresponding to a region (a) where a plurality of reinforced fibers is partly disposed in parallel along the curved line for bending (12), and the inner circumferential portion (16) corresponding to the section (b) constituted solely of another plurality of reinforced fibers disposed throughout the entire area, so as to intersect the former plurality of reinforced fibers at a predetermined angle in the region (a). Principal Use: An aircraft, an automobile, a vessel, a constructed structure, etc. Especially a window frame or a fuel inlet of an aircraft.
Abstract:
A toroidal pressure vessel having extremely high pressure resistance has laminated latitudinal reinforcing fiber layers to improve a strength in a latitudinal direction of the pressure vessel. Moreover, putting reinforcing fibers constituting those laminated latitudinal reinforcing fiber layers in continuity enables further improvement of strength in the latitudinal direction of the pressure vessel, for example compared with a case where the reinforcing fibers are divided for each layer.
Abstract:
A novel process for producing a dry preform for a composite material takes advantage of the fact that a reinforcing filament assembly, when consisting of a fiber reinforcement layer a, formed by stringing a first set of parallel strands of fiber reinforcement over a part or all of the plane within any desired shape along the straight axis 2, and a fiber reinforcement layer b, formed by stringing a second set of parallel strands of fiber reinforcement over the plane at an angle θ with respect to the straight axis 2, such that 0°
Abstract:
A unidirectional three dimensional fiber structure is provided which does not require weaving, displays a high level of interlayer strength and does not suffer from cracking, and which can also be easily produced with any arbitrary cross-section. A unidirectional three dimensional fiber structure is produced by inserting a plurality of long fibers which have been aligned unidirectionally into an inlet at one end of a cylindrical die with a plurality of needle holes in the peripheral walls thereof, and then performing needlepunch through the needle holes while drawing the plurality of long fibers out from an outlet at the opposite end of the cylindrical die.