Abstract:
For manufacturing a gas generator (1), a tubular body (10) having an opening (14) in a circumferential wall (12) and a housing part (16) having an attachment end (26) are provided. The geometry of a proximate rim (20) of the opening (14) and that of the attachment end (26) are coordinated such that a first contact region encircling the opening (14) and a second contact region on the attachment end (26), which is circumferentially closed, are formed. The housing part (16) is placed onto the tubular body (10) such that the first contact region is in contact with the second contact region. Then the body (10) and the housing part (16) are joined to each other by capacitor discharge welding.
Abstract:
A gas generator has a combustion chamber containing a pyrotechnic propellant charge and a biasing unit biasing the propellant charge. A holding device is provided, which holds the biasing unit in a predetermined, fixed, compressed position and which is designed to be releasable, so as to selectively release the biasing unit, so that it arrives at a release position in which it exerts a biasing force on the propellant charge.
Abstract:
An inflator has an elongate outer housing (110) which has at least one discharge opening (126) and which contains a compressed gas container (112) and an igniting unit (116) provided at a first axial end (114) of the compressed gas container (112). The igniting of said igniting unit generates a shock wave which, in a shock wave direction (S), enters the compressed gas container (112) at the first axial end thereof and which passes at least through some sections of the compressed gas container (112). The discharge opening (126) is arranged away from the first axial end of the compressed gas container (112) and is closed by a bursting membrane (128) which can be destroyed by the shock wave, wherein the bursting membrane (128) is not oriented perpendicularly to the shock wave direction (S). The compressed gas container (112) has a deflecting device (138; 338; 438) which deflects the shock wave running through the compressed gas container (112) from the shock wave direction (S) in the direction of the bursting membrane (128).
Abstract:
A gas generator comprises an oblong outer housing and an elongated combustion chamber insert with a tubular wall arranged in the outer housing. The combustion chamber insert contains a solid propellant, has a first and a second axial end and is held in the outer housing. The tubular wall of the combustion chamber insert is fixed at both axial ends by a form fit in radial and axial direction to the outer housing.
Abstract:
An inflator (10), especially for a vehicle occupant restraint system, comprising a combustion chamber (24) in which solid propellant (28) adapted to be burnt off while forming a gas is accommodated, a storage chamber (26) containing a pressure gas (30), an igniter (14) and a component (20) arranged between the combustion chamber (24) and the storage chamber (26). There is at least one flow communication between the storage chamber (26) and the combustion chamber (24). The component (20) includes an additional weakened zone (22) adapted to be destroyed upon activation of the inflator (10) so as to permit flow of gas from the combustion chamber (24) into the storage chamber (26).
Abstract:
An inflator (10), especially for a vehicle occupant restraint system, comprising a combustion chamber (24) in which solid propellant (28) adapted to be burnt off while forming a gas is accommodated, a storage chamber (26) containing a pressure gas (30), an igniter (14) and a component (20) arranged between the combustion chamber (24) and the storage chamber (26). There is at least one flow communication between the storage chamber (26) and the combustion chamber (24). The component (20) includes an additional weakened zone (22) adapted to be destroyed upon activation of the inflator (10) so as to permit flow of gas from the combustion chamber (24) into the storage chamber (26).
Abstract:
For manufacturing a gas generator (1), a tubular body (10) having an opening (14) in a circumferential wall (12) and a housing part (16) having an attachment end (26) are provided. The geometry of a proximate rim (20) of the opening (14) and that of the attachment end (26) are coordinated such that a first contact region encircling the opening (14) and a second contact region on the attachment end (26), which is circumferentially closed, are formed. The housing part (16) is placed onto the tubular body (10) such that the first contact region is in contact with the second contact region. Then the body (10) and the housing part (16) are joined to each other by capacitor discharge welding.
Abstract:
An inflator has an elongate outer housing (110) which has at least one discharge opening (126) and which contains a compressed gas container (112) and an igniting unit (116) provided at a first axial end (114) of the compressed gas container (112). The igniting of said igniting unit generates a shock wave which, in a shock wave direction (S), enters the compressed gas container (112) at the first axial end thereof and which passes at least through some sections of the compressed gas container (112). The discharge opening (126) is arranged away from the first axial end of the compressed gas container (112) and is closed by a bursting membrane (128) which can be destroyed by the shock wave, wherein the bursting membrane (128) is not oriented perpendicularly to the shock wave direction (S). The compressed gas container (112) has a deflecting device (138; 338; 438) which deflects the shock wave running through the compressed gas container (112) from the shock wave direction (S) in the direction of the bursting membrane (128).
Abstract:
A gas generator comprises an oblong outer housing and an elongated combustion chamber insert with a tubular wall arranged in the outer housing. The combustion chamber insert contains a solid propellant, has a first and a second axial end and is held in the outer housing. The tubular wall of the combustion chamber insert is fixed at both axial ends by a form fit in radial and axial direction to the outer housing.
Abstract:
A gas generator housing part is produced of a thin-walled tube having a wall thickness which amounts to a maximum of 10% of a tube external diameter and a minimum tensile strength which amounts to at least approximately 800 N/mm2, and a connecting piece having an external diameter which amounts to between 15% and 40% of the tube external diameter. After aligning the connecting piece radially to the tube such that an end face of the connecting piece faces an outer face of the tube, the tube and the connecting piece are joined by friction welding. A maximum welding time amounts to less than 1 second, preferably less than 0.3 second and a friction depth amounts to less than 80% of the wall thickness of the tube.
Abstract translation:气体发生器壳体部分由薄壁管制成,其壁厚度最大为管外径的10%,最小拉伸强度至少为约800N / mm 2, / SUP,以及外径为管外径的15%〜40%的连接件。 在将连接件径向对准管子之后,连接件的端面面向管的外表面,通过摩擦焊将管和连接件接合。 最大焊接时间小于1秒,优选小于0.3秒,摩擦深度小于管壁厚度的80%。