Abstract:
A method for making a compartmentalized sealant strip and barrier assembly 10 has the steps of co-extruding a barrier strip 9 of non-sealant elastomeric material with a plurality of projecting linear extending walls 9c and a sealant strip 11 wherein the sealant strip 11 is formed on one side of the barrier strip 9 filling the space between the plurality of projecting walls 9c to form a plurality of linearly extending rows of sealant 11 across the transverse width of the co-extrusion to form the compartmentalized sealant strip and barrier assembly 10. The step of co-extruding may further include the step of: forming the projecting walls 9c on an inclined angle relative to a plane perpendicular to the width of the assembly 10. The step of co-extruding further has the step of forming the barrier strip 9 with lateral edges 9a and 9c that extend beyond the lateral outermost sealant strips 11 on each side of the assembly 10, the lateral edges 9a, 9b being bonding surfaces to seal the sealant strip and barrier assembly 10 into an uncured rubber layer when assembled into an unvulcanized tire 2.
Abstract:
A method for making a compartmentalized sealant strip and barrier assembly 10 has the steps of co-extruding a barrier strip 9 of non-sealant elastomeric material with a plurality of projecting linear extending walls 9c and a sealant strip 11 wherein the sealant strip 11 is formed on one side of the barrier strip 9 filling the space between the plurality of projecting walls 9c to form a plurality of linearly extending rows of sealant 11 across the transverse width of the co-extrusion to form the compartmentalized sealant strip and barrier assembly 10.
Abstract:
A method and apparatus for making a tire with a built in sealant is provided. The method includes the steps of mounting an inner liner onto a tire building drum, extruding a sealant composition into strips having tapered sidewalls, cutting the strip to a desired length, mounting the sealant over the inner liner in two or more zones, wherein each zone is separated by a circumferential divider which joins the inner liner to the a cover layer forming a barrier to prevent migration of the sealant from one zone to another.
Abstract:
The present invention relates to a pneumatic tire which contains a built-in zoned puncture sealant layer. The zoned puncture sealant layer is comprised of organoperoxide depolymerized butyl rubber zones comprised of a central primary zone and lateral zones joined together to form a unitary sealant layer. The sealant of the lateral zones of the sealant layer is of a higher storage modulus (G′) than the sealant of the central zone.
Abstract:
A two-piece tire assembly has a removable tread belt 12 for installing about the circumference of a tire carcass 14. The tread belt has a pair of lateral ends each axially extending beyond the inflated unloaded carcass 14 at the circumferential surface by a distance of at least 4% of the width as measured at the tread belt 12 and carcass 14 interface. The carcass 14 has an abrasion resistant rubber layer 82A at the tread belt interface. The tread belt 12 also has the abrasion resistance tread compound 82B at the carcass 14 interface.
Abstract:
A method for making a compartmentalized sealant strip and barrier assembly 10 has the steps of co-extruding a barrier strip 9 of non-sealant elastomeric material with a plurality of projecting linear extending walls 9c and a sealant strip 11 wherein the sealant strip 11 is formed on one side of the barrier strip 9 filling the space between the plurality of projecting walls 9c to form a plurality of linearly extending rows of sealant 11 across the transverse width of the co-extrusion to form the compartmentalized sealant strip and barrier assembly 10. The step of co-extruding may further include the step of: forming the projecting walls 9c on an inclined angle relative to a plane perpendicular to the width of the assembly 10. The step of co-extruding further has the step of forming the barrier strip 9 with lateral edges 9a and 9c that extend beyond the lateral outermost sealant strips 11 on each side of the assembly 10, the lateral edges 9a, 9b being bonding surfaces to seal the sealant strip and barrier assembly 10 into an uncured rubber layer when assembled into an unvulcanized tire 2.
Abstract:
A two-piece tire assembly has a removable tread belt 12 for installing about the circumference of a tire carcass 14. The tread belt has at least a pair of belt layers, and one layer comprising inextensible reinforcing cables inclined at substantially zero degrees relative to the circumferential direction of the tire assembly. The cables in zero degree ply have a tensile breaking load of at least 27500 N.
Abstract:
A two-piece tire assembly has a removable tread belt 12 for installing about the circumference of a tire carcass 14. The tread belt has a pair of lateral ends each axially extending beyond the inflated unloaded carcass 14 at the circumferential surface by a distance of at least 4% of the width as measured at the tread belt 12 and carcass 14 interface. The carcass 14 has an abrasion resistant rubber layer 82 at the tread belt interface. The tread belt 12 also has the abrasion resistance tread compound 82 at the carcass 14 interface.
Abstract:
A method for making a compartmentalized sealant strip and barrier assembly 10 has the steps of co-extruding a barrier strip 9 of non-sealant elastomeric material with a plurality of projecting linear extending walls 9c and a sealant strip 11 wherein the sealant strip 11 is formed on one side of the barrier strip 9 filling the space between the plurality of projecting walls 9c to form a plurality of linearly extending rows of sealant 11 across the transverse width of the co-extrusion to form the compartmentalized sealant strip and barrier assembly 10.
Abstract:
The present invention relates to a pneumatic tire which contains a built-in zoned puncture sealant layer. The zoned puncture sealant layer is comprised of organoperoxide depolymerized butyl rubber zones comprised of a central primary zone and lateral zones joined together to form a unitary sealant layer. The sealant of the lateral zones of the sealant layer is of a higher storage modulus (G′) than the sealant of the central zone.