Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor® series having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gas-tight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gas-tight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift
Abstract:
A method of forming a metal halide discharge tube comprises: arranging a tubular body (110) in an essentially vertical orientation; disposing a loose-fit T-plug (100) having a cylindrical portion (106) and an annular flange (104) in an upper open end of the tubular body (110) so that the cylindrical portion (106) of the T-plug (100) is disposed within the open end of the tubular body (110) in a contact-free, spaced relationship with an inner wall of the tubular body and with the annular flange (104) seating against an annular top end edge surface (108) of the tubular body (100); and firing the tubular body and the loose-fit T-plug to shrink fit the tubular body and the loose-fit T-plug to interfuse the loose-fit T-plug with the upper end of the tubular body in a manner which results in a unitary/monolithic body.
Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor® series having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gas-tight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gas-tight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500 K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift
Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift
Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about +10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift
Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift
Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor® series having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gas-tight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gas-tight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500 K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift